Prime number theorem for analytic skew products | Annals of Mathematics

IF 5.7 1区 数学 Q1 MATHEMATICS
Adam Kanigowski, Mariusz Lemańczyk, Maksym Radziwiłł
{"title":"Prime number theorem for analytic skew products | Annals of Mathematics","authors":"Adam Kanigowski, Mariusz Lemańczyk, Maksym Radziwiłł","doi":"10.4007/annals.2024.199.2.2","DOIUrl":null,"url":null,"abstract":"<p>We establish a prime number theorem for all uniquely ergodic, analytic skew products on the $2$-torus $\\mathbb{T}^2$. More precisely, for every irrational $\\alpha$ and every $1$-periodic real analytic $g:\\mathbb{R}\\to\\mathbb{R}$ of zero mean, let $T_{\\alpha,g} : \\mathbb{T}^2 \\rightarrow \\mathbb{T}^2$ be defined by $(x,y) \\mapsto (x+\\alpha,y+g(x))$. We prove that if $T_{\\alpha, g}$ is uniquely ergodic then, for every $(x,y) \\in \\mathbb{T}^2$, the sequence $\\{T_{\\alpha, g}^p(x,y)\\}$ is equidistributed on $\\mathbb{T}^2$ as $p$ traverses prime numbers. This is the first example of a class of natural, non-algebraic and smooth dynamical systems for which a prime number theorem holds. We also show that such a prime number theorem does not necessarily hold if $g$ is only continuous on $\\mathbb{T}$.</p>","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":"32 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2024.199.2.2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish a prime number theorem for all uniquely ergodic, analytic skew products on the $2$-torus $\mathbb{T}^2$. More precisely, for every irrational $\alpha$ and every $1$-periodic real analytic $g:\mathbb{R}\to\mathbb{R}$ of zero mean, let $T_{\alpha,g} : \mathbb{T}^2 \rightarrow \mathbb{T}^2$ be defined by $(x,y) \mapsto (x+\alpha,y+g(x))$. We prove that if $T_{\alpha, g}$ is uniquely ergodic then, for every $(x,y) \in \mathbb{T}^2$, the sequence $\{T_{\alpha, g}^p(x,y)\}$ is equidistributed on $\mathbb{T}^2$ as $p$ traverses prime numbers. This is the first example of a class of natural, non-algebraic and smooth dynamical systems for which a prime number theorem holds. We also show that such a prime number theorem does not necessarily hold if $g$ is only continuous on $\mathbb{T}$.

解析偏斜积的素数定理 | 数学年鉴
我们为所有唯一遍历的、2$-torus $\mathbb{T}^2$ 上的解析偏积建立了一个素数定理。更确切地说,对于每一个无理 $\alpha$ 和每一个均值为零的 1$ 周期实解析 $g:\mathbb{R}\to\mathbb{R}$,让 $T_{alpha,g} : \mathbb{T}^2 \rightarrow \mathbb{T}^2$定义为 $(x,y) \mapsto (x+\alpha,y+g(x))$。我们证明,如果 $T_{\alpha, g}$ 是唯一遍历的,那么对于 \mathbb{T}^2$ 中的每一个 $(x,y),当 $p$ 遍历素数时,序列 $\{T_{\alpha, g}^p(x,y)\}$ 在 $\mathbb{T}^2$ 上是等分布的。这是素数定理成立的一类自然、非代数、平稳动力系统的第一个例子。我们还证明,如果 $g$ 仅在 $\mathbb{T}$ 上连续,则素数定理不一定成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Mathematics
Annals of Mathematics 数学-数学
CiteScore
9.10
自引率
2.00%
发文量
29
审稿时长
12 months
期刊介绍: The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信