Adam Kanigowski, Mariusz Lemańczyk, Maksym Radziwiłł
{"title":"Prime number theorem for analytic skew products | Annals of Mathematics","authors":"Adam Kanigowski, Mariusz Lemańczyk, Maksym Radziwiłł","doi":"10.4007/annals.2024.199.2.2","DOIUrl":null,"url":null,"abstract":"<p>We establish a prime number theorem for all uniquely ergodic, analytic skew products on the $2$-torus $\\mathbb{T}^2$. More precisely, for every irrational $\\alpha$ and every $1$-periodic real analytic $g:\\mathbb{R}\\to\\mathbb{R}$ of zero mean, let $T_{\\alpha,g} : \\mathbb{T}^2 \\rightarrow \\mathbb{T}^2$ be defined by $(x,y) \\mapsto (x+\\alpha,y+g(x))$. We prove that if $T_{\\alpha, g}$ is uniquely ergodic then, for every $(x,y) \\in \\mathbb{T}^2$, the sequence $\\{T_{\\alpha, g}^p(x,y)\\}$ is equidistributed on $\\mathbb{T}^2$ as $p$ traverses prime numbers. This is the first example of a class of natural, non-algebraic and smooth dynamical systems for which a prime number theorem holds. We also show that such a prime number theorem does not necessarily hold if $g$ is only continuous on $\\mathbb{T}$.</p>","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":"32 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2024.199.2.2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We establish a prime number theorem for all uniquely ergodic, analytic skew products on the $2$-torus $\mathbb{T}^2$. More precisely, for every irrational $\alpha$ and every $1$-periodic real analytic $g:\mathbb{R}\to\mathbb{R}$ of zero mean, let $T_{\alpha,g} : \mathbb{T}^2 \rightarrow \mathbb{T}^2$ be defined by $(x,y) \mapsto (x+\alpha,y+g(x))$. We prove that if $T_{\alpha, g}$ is uniquely ergodic then, for every $(x,y) \in \mathbb{T}^2$, the sequence $\{T_{\alpha, g}^p(x,y)\}$ is equidistributed on $\mathbb{T}^2$ as $p$ traverses prime numbers. This is the first example of a class of natural, non-algebraic and smooth dynamical systems for which a prime number theorem holds. We also show that such a prime number theorem does not necessarily hold if $g$ is only continuous on $\mathbb{T}$.
期刊介绍:
The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.