{"title":"Canonical representations of surface groups | Annals of Mathematics","authors":"Aaron Landesman, Daniel Litt","doi":"10.4007/annals.2024.199.2.6","DOIUrl":null,"url":null,"abstract":"<p>Let $\\Sigma _{g,n}$ be an orientable surface of genus $g$ with $n$ punctures. We study actions of the mapping class group $\\mathrm {Mod}_{g,n}$ of $\\Sigma _{g,n}$ via Hodge-theoretic and arithmetic techniques. We show that if $$\\rho : \\pi _1(\\Sigma _{g,n})\\to \\mathrm {GL}_r(\\mathbb {C})$$ is a representation whose conjugacy class has finite orbit under $\\mathrm {Mod}_{g,n}$, and $r\\lt \\sqrt {g+1}$, then $\\rho $ has finite image. This answers questions of Junho Peter Whang and Mark Kisin. We give applications of our methods to the Putman-Wieland conjecture, the Fontaine-Mazur conjecture, and a question of Esnault-Kerz. The proofs rely on non-abelian Hodge theory, our earlier work on semistability of isomonodromic deformations, and recent work of Esnault-Groechenig and Klevdal-Patrikis on Simpson’s integrality conjecture for cohomologically rigid local systems.</p>","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":"8 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2024.199.2.6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $\Sigma _{g,n}$ be an orientable surface of genus $g$ with $n$ punctures. We study actions of the mapping class group $\mathrm {Mod}_{g,n}$ of $\Sigma _{g,n}$ via Hodge-theoretic and arithmetic techniques. We show that if $$\rho : \pi _1(\Sigma _{g,n})\to \mathrm {GL}_r(\mathbb {C})$$ is a representation whose conjugacy class has finite orbit under $\mathrm {Mod}_{g,n}$, and $r\lt \sqrt {g+1}$, then $\rho $ has finite image. This answers questions of Junho Peter Whang and Mark Kisin. We give applications of our methods to the Putman-Wieland conjecture, the Fontaine-Mazur conjecture, and a question of Esnault-Kerz. The proofs rely on non-abelian Hodge theory, our earlier work on semistability of isomonodromic deformations, and recent work of Esnault-Groechenig and Klevdal-Patrikis on Simpson’s integrality conjecture for cohomologically rigid local systems.
期刊介绍:
The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.