Canonical representations of surface groups | Annals of Mathematics

IF 5.7 1区 数学 Q1 MATHEMATICS
Aaron Landesman, Daniel Litt
{"title":"Canonical representations of surface groups | Annals of Mathematics","authors":"Aaron Landesman, Daniel Litt","doi":"10.4007/annals.2024.199.2.6","DOIUrl":null,"url":null,"abstract":"<p>Let $\\Sigma _{g,n}$ be an orientable surface of genus $g$ with $n$ punctures. We study actions of the mapping class group $\\mathrm {Mod}_{g,n}$ of $\\Sigma _{g,n}$ via Hodge-theoretic and arithmetic techniques. We show that if $$\\rho : \\pi _1(\\Sigma _{g,n})\\to \\mathrm {GL}_r(\\mathbb {C})$$ is a representation whose conjugacy class has finite orbit under $\\mathrm {Mod}_{g,n}$, and $r\\lt \\sqrt {g+1}$, then $\\rho $ has finite image. This answers questions of Junho Peter Whang and Mark Kisin. We give applications of our methods to the Putman-Wieland conjecture, the Fontaine-Mazur conjecture, and a question of Esnault-Kerz. The proofs rely on non-abelian Hodge theory, our earlier work on semistability of isomonodromic deformations, and recent work of Esnault-Groechenig and Klevdal-Patrikis on Simpson’s integrality conjecture for cohomologically rigid local systems.</p>","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":"8 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2024.199.2.6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\Sigma _{g,n}$ be an orientable surface of genus $g$ with $n$ punctures. We study actions of the mapping class group $\mathrm {Mod}_{g,n}$ of $\Sigma _{g,n}$ via Hodge-theoretic and arithmetic techniques. We show that if $$\rho : \pi _1(\Sigma _{g,n})\to \mathrm {GL}_r(\mathbb {C})$$ is a representation whose conjugacy class has finite orbit under $\mathrm {Mod}_{g,n}$, and $r\lt \sqrt {g+1}$, then $\rho $ has finite image. This answers questions of Junho Peter Whang and Mark Kisin. We give applications of our methods to the Putman-Wieland conjecture, the Fontaine-Mazur conjecture, and a question of Esnault-Kerz. The proofs rely on non-abelian Hodge theory, our earlier work on semistability of isomonodromic deformations, and recent work of Esnault-Groechenig and Klevdal-Patrikis on Simpson’s integrality conjecture for cohomologically rigid local systems.

表面群的典型表示 | 数学年鉴
设 $\Sigma _{g,n}$ 是一个具有 $n$ 穿刺的属$g$ 可定向曲面。我们通过霍奇理论和算术技术研究 $\Sigma _{g,n}$ 的映射类群 $\mathrm {Mod}_{g,n}$ 的作用。我们证明,如果 $$\rho : \pi _1(\Sigma _{g,n})\to \mathrm {GL}_r(\mathbb {C})$$ 是一个共轭类在 $\mathrm {Mod}_{g,n}$ 下有有限轨道的表示,并且 $r\lt \sqrt {g+1}$,那么 $\rho $ 就有有限图像。这回答了黄俊豪(Junho Peter Whang)和马克-基辛(Mark Kisin)的问题。我们给出了我们的方法在普特曼-维兰德猜想、方丹-马祖尔猜想以及埃斯努尔特-克尔兹问题上的应用。这些证明依赖于非阿贝尔霍奇理论、我们早先关于等单旋转变形半稳态性的工作,以及埃斯努尔特-格罗切尼格和克莱夫达尔-帕特里奇斯最近关于同调刚性局部系统的辛普森积分性猜想的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Mathematics
Annals of Mathematics 数学-数学
CiteScore
9.10
自引率
2.00%
发文量
29
审稿时长
12 months
期刊介绍: The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信