The asymptotics of $r(4,t)$ | Annals of Mathematics

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sam Mattheus, Jacques Verstraete
{"title":"The asymptotics of $r(4,t)$ | Annals of Mathematics","authors":"Sam Mattheus, Jacques Verstraete","doi":"10.4007/annals.2024.199.2.8","DOIUrl":null,"url":null,"abstract":"<p>For integers $s,t \\geq 2$, the Ramsey number $r(s,t)$ denotes the minimum $n$ such that every $n$-vertex graph contains a clique of order $s$ or an independent set of order $t$. In this paper we prove \\[ r(4,t) = \\Omega\\Bigl(\\frac{t^3}{\\log^4 \\! t}\\Bigr) \\quad \\quad \\mbox{ as }t \\rightarrow \\infty,\\] which determines $r(4,t)$ up to a factor of order $\\log^2 \\! t$, and solves a conjecture of Erdős.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2024.199.2.8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

For integers $s,t \geq 2$, the Ramsey number $r(s,t)$ denotes the minimum $n$ such that every $n$-vertex graph contains a clique of order $s$ or an independent set of order $t$. In this paper we prove \[ r(4,t) = \Omega\Bigl(\frac{t^3}{\log^4 \! t}\Bigr) \quad \quad \mbox{ as }t \rightarrow \infty,\] which determines $r(4,t)$ up to a factor of order $\log^2 \! t$, and solves a conjecture of Erdős.

$r(4,t)$ 的渐近线 | 数学年鉴
对于整数 $s,t \geq 2$,拉姆齐数 $r(s,t)$ 表示每个 $n$ 顶点图包含一个阶为 $s$ 的簇或一个阶为 $t$ 的独立集的最小值 $n$。在本文中,我们证明了[ r(4,t) = \Omega\Bigl(\frac{t^3}{\log^4 \! t}\Bigr) \quad \quad \mbox{ as }t \rightarrow \infty,\] 这决定了 $r(4,t)$ 直到一个阶为 $\log^2 \! t$ 的因子,并解决了厄多斯的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信