A genome-scale deep learning model to predict gene expression changes of genetic perturbations from multiplex biological networks

Lingmin Zhan, Yuanyuan Zhang, Yingdong Wang, Aoyi Wang, Caiping Cheng, Jinzhong Zhao, Wuxia Zhang, Peng Lia, Jianxin Chen
{"title":"A genome-scale deep learning model to predict gene expression changes of genetic perturbations from multiplex biological networks","authors":"Lingmin Zhan, Yuanyuan Zhang, Yingdong Wang, Aoyi Wang, Caiping Cheng, Jinzhong Zhao, Wuxia Zhang, Peng Lia, Jianxin Chen","doi":"arxiv-2403.02724","DOIUrl":null,"url":null,"abstract":"Systematic characterization of biological effects to genetic perturbation is\nessential to the application of molecular biology and biomedicine. However, the\nexperimental exhaustion of genetic perturbations on the genome-wide scale is\nchallenging. Here, we show that TranscriptionNet, a deep learning model that\nintegrates multiple biological networks to systematically predict\ntranscriptional profiles to three types of genetic perturbations based on\ntranscriptional profiles induced by genetic perturbations in the L1000 project:\nRNA interference (RNAi), clustered regularly interspaced short palindromic\nrepeat (CRISPR) and overexpression (OE). TranscriptionNet performs better than\nexisting approaches in predicting inducible gene expression changes for all\nthree types of genetic perturbations. TranscriptionNet can predict\ntranscriptional profiles for all genes in existing biological networks and\nincreases perturbational gene expression changes for each type of genetic\nperturbation from a few thousand to 26,945 genes. TranscriptionNet demonstrates\nstrong generalization ability when comparing predicted and true gene expression\nchanges on different external tasks. Overall, TranscriptionNet can systemically\npredict transcriptional consequences induced by perturbing genes on a\ngenome-wide scale and thus holds promise to systemically detect gene function\nand enhance drug development and target discovery.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.02724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Systematic characterization of biological effects to genetic perturbation is essential to the application of molecular biology and biomedicine. However, the experimental exhaustion of genetic perturbations on the genome-wide scale is challenging. Here, we show that TranscriptionNet, a deep learning model that integrates multiple biological networks to systematically predict transcriptional profiles to three types of genetic perturbations based on transcriptional profiles induced by genetic perturbations in the L1000 project: RNA interference (RNAi), clustered regularly interspaced short palindromic repeat (CRISPR) and overexpression (OE). TranscriptionNet performs better than existing approaches in predicting inducible gene expression changes for all three types of genetic perturbations. TranscriptionNet can predict transcriptional profiles for all genes in existing biological networks and increases perturbational gene expression changes for each type of genetic perturbation from a few thousand to 26,945 genes. TranscriptionNet demonstrates strong generalization ability when comparing predicted and true gene expression changes on different external tasks. Overall, TranscriptionNet can systemically predict transcriptional consequences induced by perturbing genes on a genome-wide scale and thus holds promise to systemically detect gene function and enhance drug development and target discovery.
从多重生物网络预测遗传扰动基因表达变化的基因组尺度深度学习模型
系统地描述基因扰动对生物的影响对分子生物学和生物医学的应用至关重要。然而,在全基因组范围内对遗传扰动的实验穷举是一项挑战。在这里,我们展示了一个深度学习模型--TranscriptionNet,该模型整合了多个生物网络,根据L1000项目中遗传扰动诱导的转录谱,系统地预测了三种遗传扰动的转录谱:RNA干扰(RNAi)、簇状规则间隔短回文重复(CRISPR)和过表达(OE)。与现有方法相比,TranscriptionNet 在预测所有三类遗传扰动的可诱导基因表达变化方面表现更好。转录网可以预测现有生物网络中所有基因的转录概况,并将每种类型遗传扰动的可诱导基因表达变化从几千个基因增加到 26,945 个基因。在比较不同外部任务的预测基因表达变化和真实基因表达变化时,TranscriptionNet 展示了强大的泛化能力。总之,TranscriptionNet 可以在整个基因组范围内系统地预测扰动基因诱导的转录后果,因此有望系统地检测基因功能,促进药物开发和靶标发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信