The Spectral Radius, Maximum Average Degree and Cycles of Consecutive Lengths of Graphs

Pub Date : 2024-03-05 DOI:10.1007/s00373-024-02761-0
Wenqian Zhang
{"title":"The Spectral Radius, Maximum Average Degree and Cycles of Consecutive Lengths of Graphs","authors":"Wenqian Zhang","doi":"10.1007/s00373-024-02761-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the relationship between spectral radius and maximum average degree of graphs. By using this relationship and the previous technique of Li and Ning in (J Graph Theory 103:486–492, 2023), we prove that, for any given positive number <span>\\(\\varepsilon &lt;\\frac{1}{3}\\)</span>, if <i>n</i> is a sufficiently large integer, then any graph <i>G</i> of order <i>n</i> with <span>\\(\\rho (G)&gt;\\sqrt{\\left\\lfloor \\frac{n^{2}}{4}\\right\\rfloor }\\)</span> contains a cycle of length <i>t</i> for all integers <span>\\(t\\in [3,(\\frac{1}{3}-\\varepsilon )n]\\)</span>, where <span>\\(\\rho (G)\\)</span> is the spectral radius of <i>G</i>. This improves the result of Li and Ning (2023).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02761-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the relationship between spectral radius and maximum average degree of graphs. By using this relationship and the previous technique of Li and Ning in (J Graph Theory 103:486–492, 2023), we prove that, for any given positive number \(\varepsilon <\frac{1}{3}\), if n is a sufficiently large integer, then any graph G of order n with \(\rho (G)>\sqrt{\left\lfloor \frac{n^{2}}{4}\right\rfloor }\) contains a cycle of length t for all integers \(t\in [3,(\frac{1}{3}-\varepsilon )n]\), where \(\rho (G)\) is the spectral radius of G. This improves the result of Li and Ning (2023).

分享
查看原文
图形连续长度的谱半径、最大平均度和周期
本文研究了图的谱半径和最大平均度之间的关系。利用这一关系以及李和宁在《图论》(J Graph Theory 103:486-492, 2023)中的技术,我们证明了对于任何给定的正数 \(\varepsilon <\frac{1}{3}\), 如果 n 是一个足够大的整数,那么任何阶数为 n 的图 G 具有 \(\rho (G)>;\sqrt\{left\floor \frac{n^{2}}{4}\right\rfloor }\) 包含一个长度为 t 的循环,对于所有整数 \(t\in [3,(\frac{1}{3}-\varepsilon )n]\), 其中 \(\rho (G)\) 是 G 的光谱半径。这改进了李和宁(2023)的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信