{"title":"Chemical diversity of scleractinian corals revealed by untargeted metabolomics and molecular networking","authors":"Jiying Pei, Yuxia Zhou, Shiguo Chen, Kefu Yu, Zhenjun Qin, Ruijie Zhang, Yitong Wang","doi":"10.1007/s13131-023-2173-y","DOIUrl":null,"url":null,"abstract":"<p>The chemical diversity of scleractinian corals is closely related to their physiological, ecological, and evolutionary status, and can be influenced by both genetic background and environmental variables. To investigate intraspecific variation in the metabolites of these corals, the metabolomes of four species (<i>Pocillopora meandrina</i>, <i>Seriatopora hystrix</i>, <i>Acropora formosa</i>, and <i>Fungia fungites</i>) from the South China Sea were analyzed using untargeted mass spectrometry-based metabolomics. The results showed that a variety of metabolites, including amino acids, peptides, lipids, and other small molecules, were differentially distributed among the four species, leading to their significant separation in principal component analysis and hierarchical clustering plots. The higher content of storage lipids in branching corals (<i>P. meandrina</i>, <i>S. hystrix</i>, and <i>A. formosa</i>) compared to the solitary coral (<i>F. fungites</i>) may be due to the high densities of zooxanthellae in their tissues. The high content of aromatic amino acids in <i>P. meandrina</i> may help the coral protect against ultraviolet damage and promote growth in shallow seawater, while nitrogen-rich compounds may enable <i>S. hystrix</i> to survive in various challenging environments. The metabolites enriched in <i>F. fungites</i>, including amino acids, dipeptides, phospholipids, and other small molecules, may be related to the composition of the coral’s mucus and its life-history, such as its ability to move freely and live solitarily. Studying the chemical diversity of scleractinian corals not only provides insight into their environmental adaptation, but also holds potential for the chemotaxonomy of corals and the discovery of novel bioactive natural products.</p>","PeriodicalId":6922,"journal":{"name":"Acta Oceanologica Sinica","volume":"17 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Oceanologica Sinica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s13131-023-2173-y","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
The chemical diversity of scleractinian corals is closely related to their physiological, ecological, and evolutionary status, and can be influenced by both genetic background and environmental variables. To investigate intraspecific variation in the metabolites of these corals, the metabolomes of four species (Pocillopora meandrina, Seriatopora hystrix, Acropora formosa, and Fungia fungites) from the South China Sea were analyzed using untargeted mass spectrometry-based metabolomics. The results showed that a variety of metabolites, including amino acids, peptides, lipids, and other small molecules, were differentially distributed among the four species, leading to their significant separation in principal component analysis and hierarchical clustering plots. The higher content of storage lipids in branching corals (P. meandrina, S. hystrix, and A. formosa) compared to the solitary coral (F. fungites) may be due to the high densities of zooxanthellae in their tissues. The high content of aromatic amino acids in P. meandrina may help the coral protect against ultraviolet damage and promote growth in shallow seawater, while nitrogen-rich compounds may enable S. hystrix to survive in various challenging environments. The metabolites enriched in F. fungites, including amino acids, dipeptides, phospholipids, and other small molecules, may be related to the composition of the coral’s mucus and its life-history, such as its ability to move freely and live solitarily. Studying the chemical diversity of scleractinian corals not only provides insight into their environmental adaptation, but also holds potential for the chemotaxonomy of corals and the discovery of novel bioactive natural products.
期刊介绍:
Founded in 1982, Acta Oceanologica Sinica is the official bi-monthly journal of the Chinese Society of Oceanography. It seeks to provide a forum for research papers in the field of oceanography from all over the world. In working to advance scholarly communication it has made the fast publication of high-quality research papers within this field its primary goal.
The journal encourages submissions from all branches of oceanography, including marine physics, marine chemistry, marine geology, marine biology, marine hydrology, marine meteorology, ocean engineering, marine remote sensing and marine environment sciences.
It publishes original research papers, review articles as well as research notes covering the whole spectrum of oceanography. Special issues emanating from related conferences and meetings are also considered. All papers are subject to peer review and are published online at SpringerLink.