{"title":"Quasi-metric antipodal spaces and maximal Gromov hyperbolic spaces","authors":"Kingshook Biswas","doi":"10.1007/s10711-024-00903-5","DOIUrl":null,"url":null,"abstract":"<p>Hyperbolic fillings of metric spaces are a well-known tool for proving results on extending quasi-Moebius maps between boundaries of Gromov hyperbolic spaces to quasi-isometries between the spaces. For a hyperbolic filling <i>Y</i> of the boundary of a Gromov hyperbolic space <i>X</i>, one has a quasi-Moebius identification between the boundaries <span>\\(\\partial Y\\)</span> and <span>\\(\\partial X\\)</span>. For CAT(-1) spaces, and more generally boundary continuous Gromov hyperbolic spaces, one can refine the quasi-Moebius structure on the boundary to a Moebius structure. It is then natural to ask whether there exists a functorial hyperbolic filling of the boundary by a boundary continuous Gromov hyperbolic space with an identification between boundaries which is not just quasi-Moebius, but in fact Moebius. The filling should be functorial in the sense that a Moebius homeomorphism between boundaries should induce an isometry between there fillings. We give a positive answer to this question for a large class of boundaries satisfying one crucial hypothesis, the <i>antipodal property</i>. This gives a class of compact spaces called <i>quasi-metric antipodal spaces</i>. For any such space <i>Z</i>, we give a functorial construction of a boundary continuous Gromov hyperbolic space <span>\\(\\mathcal {M}(Z)\\)</span> together with a Moebius identification of its boundary with <i>Z</i>. The space <span>\\(\\mathcal {M}(Z)\\)</span> is maximal amongst all fillings of <i>Z</i>. These spaces <span>\\(\\mathcal {M}(Z)\\)</span> give in fact all examples of a natural class of spaces called <i>maximal Gromov hyperbolic spaces</i>. We prove an equivalence of categories between quasi-metric antipodal spaces and maximal Gromov hyperbolic spaces. This is part of a more general equivalence we prove between the larger categories of certain spaces called <i>antipodal spaces</i> and <i>maximal Gromov product spaces</i>. We prove that the injective hull of a Gromov product space <i>X</i> is isometric to the maximal Gromov product space <span>\\(\\mathcal {M}(Z)\\)</span>, where <i>Z</i> is the boundary of <i>X</i>. We also show that a Gromov product space is injective if and only if it is maximal.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00903-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperbolic fillings of metric spaces are a well-known tool for proving results on extending quasi-Moebius maps between boundaries of Gromov hyperbolic spaces to quasi-isometries between the spaces. For a hyperbolic filling Y of the boundary of a Gromov hyperbolic space X, one has a quasi-Moebius identification between the boundaries \(\partial Y\) and \(\partial X\). For CAT(-1) spaces, and more generally boundary continuous Gromov hyperbolic spaces, one can refine the quasi-Moebius structure on the boundary to a Moebius structure. It is then natural to ask whether there exists a functorial hyperbolic filling of the boundary by a boundary continuous Gromov hyperbolic space with an identification between boundaries which is not just quasi-Moebius, but in fact Moebius. The filling should be functorial in the sense that a Moebius homeomorphism between boundaries should induce an isometry between there fillings. We give a positive answer to this question for a large class of boundaries satisfying one crucial hypothesis, the antipodal property. This gives a class of compact spaces called quasi-metric antipodal spaces. For any such space Z, we give a functorial construction of a boundary continuous Gromov hyperbolic space \(\mathcal {M}(Z)\) together with a Moebius identification of its boundary with Z. The space \(\mathcal {M}(Z)\) is maximal amongst all fillings of Z. These spaces \(\mathcal {M}(Z)\) give in fact all examples of a natural class of spaces called maximal Gromov hyperbolic spaces. We prove an equivalence of categories between quasi-metric antipodal spaces and maximal Gromov hyperbolic spaces. This is part of a more general equivalence we prove between the larger categories of certain spaces called antipodal spaces and maximal Gromov product spaces. We prove that the injective hull of a Gromov product space X is isometric to the maximal Gromov product space \(\mathcal {M}(Z)\), where Z is the boundary of X. We also show that a Gromov product space is injective if and only if it is maximal.