Kinetic modeling of dust grain dynamics in electrostatic sieving

IF 2.8 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Aaron Berkhoff, Easton Ingram, Fateme Rezaei, Jeffrey Smith, David Bayless, William Schonberg, Daoru Han
{"title":"Kinetic modeling of dust grain dynamics in electrostatic sieving","authors":"Aaron Berkhoff, Easton Ingram, Fateme Rezaei, Jeffrey Smith, David Bayless, William Schonberg, Daoru Han","doi":"10.1007/s40571-024-00729-8","DOIUrl":null,"url":null,"abstract":"<p>A new kinetic particle modeling framework was developed to investigate electrostatic transport of lunar regolith dust particles with applications to the concept of electrostatic sieving. The new approach is based on kinetic particle dynamics and includes major modules of sampling the particle size distribution, solving electric fields, and tracking motion of charged dust grains. A case study for a concept of electrostatic sieving was chosen to validate the new model. The simulation achieved similar performance of particle size classification as reported in the literature. The new model is computationally efficient (takes a few minutes on a PC-type laptop computer) so that researchers can use it as a design and analysis tool to explore large parameter space for system optimization.</p>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40571-024-00729-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A new kinetic particle modeling framework was developed to investigate electrostatic transport of lunar regolith dust particles with applications to the concept of electrostatic sieving. The new approach is based on kinetic particle dynamics and includes major modules of sampling the particle size distribution, solving electric fields, and tracking motion of charged dust grains. A case study for a concept of electrostatic sieving was chosen to validate the new model. The simulation achieved similar performance of particle size classification as reported in the literature. The new model is computationally efficient (takes a few minutes on a PC-type laptop computer) so that researchers can use it as a design and analysis tool to explore large parameter space for system optimization.

静电筛分过程中尘粒动力学建模
开发了一种新的动力学粒子建模框架,用于研究月球碎屑尘粒的静电传输,并将其应用于静电筛分概念。新方法以动力学粒子动力学为基础,包括粒度分布采样、电场求解和带电尘粒运动跟踪等主要模块。为验证新模型,选择了一个静电筛分概念的案例研究。模拟实现了与文献报道类似的粒度分类性能。新模型的计算效率很高(在 PC 型笔记本电脑上只需几分钟),因此研究人员可将其用作设计和分析工具,探索系统优化的大参数空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Particle Mechanics
Computational Particle Mechanics Mathematics-Computational Mathematics
CiteScore
5.70
自引率
9.10%
发文量
75
期刊介绍: GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research. SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including: (a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc., (b) Particles representing material phases in continua at the meso-, micro-and nano-scale and (c) Particles as a discretization unit in continua and discontinua in numerical methods such as Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信