RVRAE: A Dynamic Factor Model Based on Variational Recurrent Autoencoder for Stock Returns Prediction

Yilun Wang, Shengjie Guo
{"title":"RVRAE: A Dynamic Factor Model Based on Variational Recurrent Autoencoder for Stock Returns Prediction","authors":"Yilun Wang, Shengjie Guo","doi":"arxiv-2403.02500","DOIUrl":null,"url":null,"abstract":"In recent years, the dynamic factor model has emerged as a dominant tool in\neconomics and finance, particularly for investment strategies. This model\noffers improved handling of complex, nonlinear, and noisy market conditions\ncompared to traditional static factor models. The advancement of machine\nlearning, especially in dealing with nonlinear data, has further enhanced asset\npricing methodologies. This paper introduces a groundbreaking dynamic factor\nmodel named RVRAE. This model is a probabilistic approach that addresses the\ntemporal dependencies and noise in market data. RVRAE ingeniously combines the\nprinciples of dynamic factor modeling with the variational recurrent\nautoencoder (VRAE) from deep learning. A key feature of RVRAE is its use of a\nprior-posterior learning method. This method fine-tunes the model's learning\nprocess by seeking an optimal posterior factor model informed by future data.\nNotably, RVRAE is adept at risk modeling in volatile stock markets, estimating\nvariances from latent space distributions while also predicting returns. Our\nempirical tests with real stock market data underscore RVRAE's superior\nperformance compared to various established baseline methods.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.02500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the dynamic factor model has emerged as a dominant tool in economics and finance, particularly for investment strategies. This model offers improved handling of complex, nonlinear, and noisy market conditions compared to traditional static factor models. The advancement of machine learning, especially in dealing with nonlinear data, has further enhanced asset pricing methodologies. This paper introduces a groundbreaking dynamic factor model named RVRAE. This model is a probabilistic approach that addresses the temporal dependencies and noise in market data. RVRAE ingeniously combines the principles of dynamic factor modeling with the variational recurrent autoencoder (VRAE) from deep learning. A key feature of RVRAE is its use of a prior-posterior learning method. This method fine-tunes the model's learning process by seeking an optimal posterior factor model informed by future data. Notably, RVRAE is adept at risk modeling in volatile stock markets, estimating variances from latent space distributions while also predicting returns. Our empirical tests with real stock market data underscore RVRAE's superior performance compared to various established baseline methods.
RVRAE:基于变异递归自动编码器的动态因子模型,用于股票回报预测
近年来,动态因子模型已成为经济学和金融学,尤其是投资策略的主要工具。与传统的静态因子模型相比,该模型能更好地处理复杂、非线性和嘈杂的市场条件。机器学习的进步,尤其是在处理非线性数据方面的进步,进一步增强了资产定价方法。本文介绍了一种名为 RVRAE 的开创性动态因子模型。该模型是一种概率方法,可解决市场数据中的时空依赖性和噪声问题。RVRAE 巧妙地将动态因子建模原理与深度学习中的变异递归自动编码器 (VRAE) 结合在一起。RVRAE 的一个主要特点是使用了先验-后验学习方法。值得注意的是,RVRAE 擅长在波动的股票市场中建立风险模型,从潜在空间分布中估计变量,同时预测回报。使用真实股市数据进行的实证测试表明,与各种既定的基线方法相比,RVRAE 的性能更为卓越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信