D-optimal designs for multi-response linear models with two groups

Pub Date : 2024-03-05 DOI:10.1002/sta4.665
Xin Liu, Lei He, Rong-Xian Yue
{"title":"D-optimal designs for multi-response linear models with two groups","authors":"Xin Liu, Lei He, Rong-Xian Yue","doi":"10.1002/sta4.665","DOIUrl":null,"url":null,"abstract":"In recent years, multi-response linear models have gained significant popularity in various statistical applications. However, the design aspects of multi-response linear models with group-wise considerations have received limited attention in the literature. This paper aims to thoroughly investigate <mjx-container aria-label=\"upper D\" ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper D\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/75327e92-2ca5-46c5-ae20-6902d6add7ab/sta4665-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper D\" data-semantic-type=\"identifier\">D</mi></mrow>$$ D $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>-optimal designs for such models. Specifically, we focus on scenarios involving two groups, where the proportions of observations for each group can be arbitrarily selected or not. Two equivalence theorems are presented to elaborate the characterization of <mjx-container aria-label=\"upper D\" ctxtmenu_counter=\"2\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper D\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/ac956979-3a41-48e3-8773-e9144fe466ed/sta4665-math-0004.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper D\" data-semantic-type=\"identifier\">D</mi></mrow>$$ D $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>-optimal designs. Additionally, we delve into the admissibility of approximate designs and establish necessary conditions for a design to be deemed admissible. Several illustrative examples are addressed to demonstrate the application of the derived theoretical results.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, multi-response linear models have gained significant popularity in various statistical applications. However, the design aspects of multi-response linear models with group-wise considerations have received limited attention in the literature. This paper aims to thoroughly investigate -optimal designs for such models. Specifically, we focus on scenarios involving two groups, where the proportions of observations for each group can be arbitrarily selected or not. Two equivalence theorems are presented to elaborate the characterization of -optimal designs. Additionally, we delve into the admissibility of approximate designs and establish necessary conditions for a design to be deemed admissible. Several illustrative examples are addressed to demonstrate the application of the derived theoretical results.
分享
查看原文
两组多反应线性模型的 D 优化设计
近年来,多反应线性模型在各种统计应用中大受欢迎。然而,文献中对分组考虑的多反应线性模型的设计方面关注有限。本文旨在深入研究此类模型的 D$$ D$$ 最佳设计。具体来说,我们将重点放在涉及两组的情况上,其中每组的观察值比例可以任意选择,也可以不选择。我们提出了两个等价定理来阐述 D$$ D$$ 最佳设计的特征。此外,我们还深入探讨了近似设计的可接受性,并建立了设计被视为可接受性的必要条件。我们还列举了几个示例来证明所得出的理论结果的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信