Carlos Vergara-Hernández, Marc Marí-Dell’Olmo, Laura Oliveras, Miguel Angel Martinez-Beneito
{"title":"Taking advantage of sampling designs in spatial small-area survey studies","authors":"Carlos Vergara-Hernández, Marc Marí-Dell’Olmo, Laura Oliveras, Miguel Angel Martinez-Beneito","doi":"10.1177/1471082x231226287","DOIUrl":null,"url":null,"abstract":"Spatial small area estimation models have become very popular in some contexts, such as disease mapping. Data in disease mapping studies are exhaustive, that is, the available data are supposed to be a complete register of all the observable events. In contrast, some other small area studies do not use exhaustive data, such as survey based studies, where a particular sampling design is typically followed and inferences are later extrapolated to the entire population. In this article we propose a spatial model for small area survey studies, taking advantage of spatial dependence between units, which is the key assumption used for yielding reliable estimates in exhaustive data based studies. In addition, and in contrast to most survey-based spatial studies, we also take into account information on the sampling design and additional supplementary variables to obtain estimates in small areas. This makes it possible to merge spatial and sampling models into a common proposal.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082x231226287","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial small area estimation models have become very popular in some contexts, such as disease mapping. Data in disease mapping studies are exhaustive, that is, the available data are supposed to be a complete register of all the observable events. In contrast, some other small area studies do not use exhaustive data, such as survey based studies, where a particular sampling design is typically followed and inferences are later extrapolated to the entire population. In this article we propose a spatial model for small area survey studies, taking advantage of spatial dependence between units, which is the key assumption used for yielding reliable estimates in exhaustive data based studies. In addition, and in contrast to most survey-based spatial studies, we also take into account information on the sampling design and additional supplementary variables to obtain estimates in small areas. This makes it possible to merge spatial and sampling models into a common proposal.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.