Non-integrability of the restricted three-body problem

Pub Date : 2024-03-06 DOI:10.1017/etds.2024.4
KAZUYUKI YAGASAKI
{"title":"Non-integrability of the restricted three-body problem","authors":"KAZUYUKI YAGASAKI","doi":"10.1017/etds.2024.4","DOIUrl":null,"url":null,"abstract":"<p>The problem of non-integrability of the circular restricted three-body problem is very classical and important in the theory of dynamical systems. It was partially solved by Poincaré in the nineteenth century: he showed that there exists no real-analytic first integral which depends analytically on the mass ratio of the second body to the total and is functionally independent of the Hamiltonian. When the mass of the second body becomes zero, the restricted three-body problem reduces to the two-body Kepler problem. We prove the non-integrability of the restricted three-body problem both in the planar and spatial cases for any non-zero mass of the second body. Our basic tool of the proofs is a technique developed here for determining whether perturbations of integrable systems which may be non-Hamiltonian are not meromorphically integrable near resonant periodic orbits such that the first integrals and commutative vector fields also depend meromorphically on the perturbation parameter. The technique is based on generalized versions due to Ayoul and Zung of the Morales–Ramis and Morales–Ramis–Simó theories. We emphasize that our results are not just applications of the theories.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of non-integrability of the circular restricted three-body problem is very classical and important in the theory of dynamical systems. It was partially solved by Poincaré in the nineteenth century: he showed that there exists no real-analytic first integral which depends analytically on the mass ratio of the second body to the total and is functionally independent of the Hamiltonian. When the mass of the second body becomes zero, the restricted three-body problem reduces to the two-body Kepler problem. We prove the non-integrability of the restricted three-body problem both in the planar and spatial cases for any non-zero mass of the second body. Our basic tool of the proofs is a technique developed here for determining whether perturbations of integrable systems which may be non-Hamiltonian are not meromorphically integrable near resonant periodic orbits such that the first integrals and commutative vector fields also depend meromorphically on the perturbation parameter. The technique is based on generalized versions due to Ayoul and Zung of the Morales–Ramis and Morales–Ramis–Simó theories. We emphasize that our results are not just applications of the theories.

分享
查看原文
受限三体问题的不可控性
圆周受限三体问题的不可控性是动力学系统理论中非常经典和重要的问题。19 世纪,庞加莱(Poincaré)部分地解决了这个问题:他证明了不存在一个实解析的第一积分,它在解析上取决于第二体与总体的质量比,并且在函数上与哈密顿无关。当第二体质量为零时,受限三体问题就会简化为二体开普勒问题。我们证明了在第二体质量不为零的情况下,受限三体问题在平面和空间上的不可控性。我们证明的基本工具是在此开发的一种技术,用于确定非哈密尔顿可积分系统的扰动在共振周期轨道附近是否不具有协整可积分性,从而使第一积分和交换向量场也协整地依赖于扰动参数。该技术基于 Ayoul 和 Zung 提出的莫拉莱斯-拉米理论和莫拉莱斯-拉米-西莫理论的广义版本。我们强调,我们的结果不仅仅是这些理论的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信