Instantaneous everywhere-blowup of parabolic SPDEs

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
{"title":"Instantaneous everywhere-blowup of parabolic SPDEs","authors":"","doi":"10.1007/s00440-024-01263-7","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We consider the following stochastic heat equation <span> <span>$$\\begin{aligned} \\partial _t u(t,x) = \\tfrac{1}{2} \\partial ^2_x u(t,x) + b(u(t,x)) + \\sigma (u(t,x)) {\\dot{W}}(t,x), \\end{aligned}$$</span> </span>defined for <span> <span>\\((t,x)\\in (0,\\infty )\\times {\\mathbb {R}}\\)</span> </span>, where <span> <span>\\({\\dot{W}}\\)</span> </span> denotes space-time white noise. The function <span> <span>\\(\\sigma \\)</span> </span> is assumed to be positive, bounded, globally Lipschitz, and bounded uniformly away from the origin, and the function <em>b</em> is assumed to be positive, locally Lipschitz and nondecreasing. We prove that the Osgood condition <span> <span>$$\\begin{aligned} \\int _1^\\infty \\frac{\\textrm{d}y}{b(y)}&lt;\\infty \\end{aligned}$$</span> </span>implies that the solution almost surely blows up everywhere and instantaneously, In other words, the Osgood condition ensures that <span> <span>\\(\\textrm{P}\\{ u(t,x)=\\infty \\quad \\hbox { for all } t&gt;0 \\hbox { and } x\\in {\\mathbb {R}}\\}=1.\\)</span> </span> The main ingredients of the proof involve a hitting-time bound for a class of differential inequalities (Remark 3.3), and the study of the spatial growth of stochastic convolutions using techniques from the Malliavin calculus and the Poincaré inequalities that were developed in Chen et al. (Electron J Probab 26:1–37, 2021, J Funct Anal 282(2):109290, 2022).</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"51 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01263-7","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the following stochastic heat equation $$\begin{aligned} \partial _t u(t,x) = \tfrac{1}{2} \partial ^2_x u(t,x) + b(u(t,x)) + \sigma (u(t,x)) {\dot{W}}(t,x), \end{aligned}$$ defined for \((t,x)\in (0,\infty )\times {\mathbb {R}}\) , where \({\dot{W}}\) denotes space-time white noise. The function \(\sigma \) is assumed to be positive, bounded, globally Lipschitz, and bounded uniformly away from the origin, and the function b is assumed to be positive, locally Lipschitz and nondecreasing. We prove that the Osgood condition $$\begin{aligned} \int _1^\infty \frac{\textrm{d}y}{b(y)}<\infty \end{aligned}$$ implies that the solution almost surely blows up everywhere and instantaneously, In other words, the Osgood condition ensures that \(\textrm{P}\{ u(t,x)=\infty \quad \hbox { for all } t>0 \hbox { and } x\in {\mathbb {R}}\}=1.\) The main ingredients of the proof involve a hitting-time bound for a class of differential inequalities (Remark 3.3), and the study of the spatial growth of stochastic convolutions using techniques from the Malliavin calculus and the Poincaré inequalities that were developed in Chen et al. (Electron J Probab 26:1–37, 2021, J Funct Anal 282(2):109290, 2022).

抛物线 SPDE 的瞬时无处爆炸
摘要 我们考虑以下随机热方程 $$\begin{aligned}\partial _t u(t,x) = \tfrac{1}{2}\partial ^2_x u(t,x) + b(u(t,x))+ sigma (u(t,x)){dot{W}}(t,x), end{aligned}$$ 定义为 \((t,x)\in (0,\infty )\times {mathbb {R}}\)其中 \({\dot{W}}\) 表示时空白噪声。函数 \(\sigma \)被假定为正值、有界、全局 Lipschitz 且远离原点均匀有界,函数 b 被假定为正值、局部 Lipschitz 且不递减。我们证明了奥斯古德条件 $$\begin{aligned}\int _1^\infty \frac{textrm{d}y}{b(y)}<;\換句話說,Osgood 條件確保(textrm{P}{ u(t,x)=\infty \quad \hbox { for all } t>0 \hbox { and } xin {\mathbb {R}}\}=1.\) 证明的主要内容涉及一类微分不等式的命中时间约束(备注 3.3),以及利用马利亚文微积分和陈等人的 Poincaré 不等式(Electron J Probab 26:1-37, 2021, J Funct Anal 282(2):109290, 2022)所发展的技术研究随机卷积的空间增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信