Efficient feature redundancy reduction for image denoising

{"title":"Efficient feature redundancy reduction for image denoising","authors":"","doi":"10.1007/s11280-024-01258-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>It is challenging to deploy convolutional neural networks (CNNs) for image denoising on low-power devices which can suffer from computational and memory constraints. To address this limitation, a simple yet effective and efficient feature redundancy reduction-based network (FRRN) is proposed in this paper, which integrates a feature refinement block (FRB), an attention fusion block (AFB), and an enhancement block (EB). Specifically, the FRB distills structural information via two parallel sub-networks, selecting representative feature representations while suppressing spatial-channel redundancy. The AFB absorbs an attentive fusion mechanism to facilitate diverse features extracted from two sub-networks, emphasizing texture and structure details but alleviating harmful features from problematic regions. The subsequent EB further boosts the feature representation abilities. Aiming to enhance denoising performance at both pixel level and semantic level, a multi-loss scheme comprising three popular loss functions is leveraged to improve the robustness of the denoiser. Comprehensive quantitative and qualitative analyses demonstrate the superiority of the proposed FRRN.</p>","PeriodicalId":501180,"journal":{"name":"World Wide Web","volume":"270 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11280-024-01258-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is challenging to deploy convolutional neural networks (CNNs) for image denoising on low-power devices which can suffer from computational and memory constraints. To address this limitation, a simple yet effective and efficient feature redundancy reduction-based network (FRRN) is proposed in this paper, which integrates a feature refinement block (FRB), an attention fusion block (AFB), and an enhancement block (EB). Specifically, the FRB distills structural information via two parallel sub-networks, selecting representative feature representations while suppressing spatial-channel redundancy. The AFB absorbs an attentive fusion mechanism to facilitate diverse features extracted from two sub-networks, emphasizing texture and structure details but alleviating harmful features from problematic regions. The subsequent EB further boosts the feature representation abilities. Aiming to enhance denoising performance at both pixel level and semantic level, a multi-loss scheme comprising three popular loss functions is leveraged to improve the robustness of the denoiser. Comprehensive quantitative and qualitative analyses demonstrate the superiority of the proposed FRRN.

高效减少图像去噪的特征冗余
摘要 在低功耗设备上部署用于图像去噪的卷积神经网络(CNN)具有挑战性,因为低功耗设备可能会受到计算和内存的限制。为了解决这一限制,本文提出了一种简单而有效的基于特征冗余减少的网络(FRRN),它集成了一个特征细化块(FRB)、一个注意力融合块(AFB)和一个增强块(EB)。具体来说,FRB 通过两个并行的子网络提炼结构信息,选择有代表性的特征表征,同时抑制空间通道冗余。AFB 吸收了一种缜密的融合机制,以促进从两个子网络中提取的不同特征,强调纹理和结构细节,但减少来自问题区域的有害特征。随后的 EB 进一步提高了特征表示能力。为了提高像素级和语义级的去噪性能,我们采用了由三种常用损失函数组成的多损失方案,以提高去噪器的鲁棒性。全面的定量和定性分析证明了所提出的 FRRN 的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信