Detection method of the seat belt for workers at height based on UAV image and YOLO algorithm

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2024-03-03 DOI:10.1016/j.array.2024.100340
Yuzheng Liu , Jianxun Zhang , Lei Shi , Mingxiang Huang , Linyu Lin , Lingfeng Zhu , Xianglu Lin , Chuanlei Zhang
{"title":"Detection method of the seat belt for workers at height based on UAV image and YOLO algorithm","authors":"Yuzheng Liu ,&nbsp;Jianxun Zhang ,&nbsp;Lei Shi ,&nbsp;Mingxiang Huang ,&nbsp;Linyu Lin ,&nbsp;Lingfeng Zhu ,&nbsp;Xianglu Lin ,&nbsp;Chuanlei Zhang","doi":"10.1016/j.array.2024.100340","DOIUrl":null,"url":null,"abstract":"<div><p>In the domain of outdoor construction within the power industry, working at significant heights is common, requiring stringent safety measures. Workers are mandated to wear hard hats and secure themselves with seat belts to prevent potential falls, ensuring their safety and reducing the risk of injuries. Detecting seat belt usage holds immense significance in safety inspections within the power industry. This study introduces detection method of the seat belt for workers at height based on UAV Image and YOLO Algorithm. The YOLOv5 approach involves integrating CSPNet into the Darknet53 backbone, incorporating the Focus layer into CSP-Darknet53, replacing the SPPF block in the SPP model, and implementing the CSPNet strategy in the PANet model. Experimental results demonstrate that the YOLOv5 algorithm achieves an elevated average accuracy of 99.2%, surpassing benchmarks set by FastRcnn, SSD, YOLOX-m, and YOLOv7. It also demonstrates superior adaptability in scenarios involving smaller objects, validated using a UAV-collected dataset of seat belt images. These findings confirm the algorithm's compliance with performance criteria for seat belt detection at power construction sites, making a significant contribution to enhancing safety measures within the power industry's construction practices.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590005624000067/pdfft?md5=50dec4f4bfbf478e832b65943e75f531&pid=1-s2.0-S2590005624000067-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005624000067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In the domain of outdoor construction within the power industry, working at significant heights is common, requiring stringent safety measures. Workers are mandated to wear hard hats and secure themselves with seat belts to prevent potential falls, ensuring their safety and reducing the risk of injuries. Detecting seat belt usage holds immense significance in safety inspections within the power industry. This study introduces detection method of the seat belt for workers at height based on UAV Image and YOLO Algorithm. The YOLOv5 approach involves integrating CSPNet into the Darknet53 backbone, incorporating the Focus layer into CSP-Darknet53, replacing the SPPF block in the SPP model, and implementing the CSPNet strategy in the PANet model. Experimental results demonstrate that the YOLOv5 algorithm achieves an elevated average accuracy of 99.2%, surpassing benchmarks set by FastRcnn, SSD, YOLOX-m, and YOLOv7. It also demonstrates superior adaptability in scenarios involving smaller objects, validated using a UAV-collected dataset of seat belt images. These findings confirm the algorithm's compliance with performance criteria for seat belt detection at power construction sites, making a significant contribution to enhancing safety measures within the power industry's construction practices.

基于无人机图像和 YOLO 算法的高空作业人员安全带检测方法
在电力行业的户外施工领域,高空作业非常普遍,需要采取严格的安全措施。工人们必须戴上安全帽,并用安全带固定自己,以防止可能发生的坠落,从而确保他们的安全并降低受伤的风险。检测安全带的使用情况对电力行业的安全检查具有重要意义。本研究介绍了基于无人机图像和 YOLO 算法的高空作业人员安全带检测方法。YOLOv5 方法包括将 CSPNet 集成到 Darknet53 骨干网中,将 Focus 层纳入 CSP-Darknet53,替换 SPP 模型中的 SPPF 块,以及在 PANet 模型中实施 CSPNet 策略。实验结果表明,YOLOv5 算法的平均准确率高达 99.2%,超过了 FastRcnn、SSD、YOLOX-m 和 YOLOv7 所设定的基准。 该算法还在涉及较小物体的场景中表现出卓越的适应性,这一点通过使用无人机收集的安全带图像数据集得到了验证。这些发现证实了该算法符合电力施工现场安全带检测的性能标准,为加强电力行业施工实践中的安全措施做出了重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信