Structural modeling of ion channels using AlphaFold2, RoseTTAFold2, and ESMFold.

Channels (Austin, Tex.) Pub Date : 2024-12-01 Epub Date: 2024-03-06 DOI:10.1080/19336950.2024.2325032
Phuong Tran Nguyen, Brandon John Harris, Diego Lopez Mateos, Adriana Hernández González, Adam Michael Murray, Vladimir Yarov-Yarovoy
{"title":"Structural modeling of ion channels using AlphaFold2, RoseTTAFold2, and ESMFold.","authors":"Phuong Tran Nguyen, Brandon John Harris, Diego Lopez Mateos, Adriana Hernández González, Adam Michael Murray, Vladimir Yarov-Yarovoy","doi":"10.1080/19336950.2024.2325032","DOIUrl":null,"url":null,"abstract":"<p><p>Ion channels play key roles in human physiology and are important targets in drug discovery. The atomic-scale structures of ion channels provide invaluable insights into a fundamental understanding of the molecular mechanisms of channel gating and modulation. Recent breakthroughs in deep learning-based computational methods, such as AlphaFold, RoseTTAFold, and ESMFold have transformed research in protein structure prediction and design. We review the application of AlphaFold, RoseTTAFold, and ESMFold to structural modeling of ion channels using representative voltage-gated ion channels, including human voltage-gated sodium (Na<sub>V</sub>) channel - Na<sub>V</sub>1.8, human voltage-gated calcium (Ca<sub>V</sub>) channel - Ca<sub>V</sub>1.1, and human voltage-gated potassium (K<sub>V</sub>) channel - K<sub>V</sub>1.3. We compared AlphaFold, RoseTTAFold, and ESMFold structural models of Na<sub>V</sub>1.8, Ca<sub>V</sub>1.1, and K<sub>V</sub>1.3 with corresponding cryo-EM structures to assess details of their similarities and differences. Our findings shed light on the strengths and limitations of the current state-of-the-art deep learning-based computational methods for modeling ion channel structures, offering valuable insights to guide their future applications for ion channel research.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":"18 1","pages":"2325032"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936637/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Channels (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19336950.2024.2325032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ion channels play key roles in human physiology and are important targets in drug discovery. The atomic-scale structures of ion channels provide invaluable insights into a fundamental understanding of the molecular mechanisms of channel gating and modulation. Recent breakthroughs in deep learning-based computational methods, such as AlphaFold, RoseTTAFold, and ESMFold have transformed research in protein structure prediction and design. We review the application of AlphaFold, RoseTTAFold, and ESMFold to structural modeling of ion channels using representative voltage-gated ion channels, including human voltage-gated sodium (NaV) channel - NaV1.8, human voltage-gated calcium (CaV) channel - CaV1.1, and human voltage-gated potassium (KV) channel - KV1.3. We compared AlphaFold, RoseTTAFold, and ESMFold structural models of NaV1.8, CaV1.1, and KV1.3 with corresponding cryo-EM structures to assess details of their similarities and differences. Our findings shed light on the strengths and limitations of the current state-of-the-art deep learning-based computational methods for modeling ion channel structures, offering valuable insights to guide their future applications for ion channel research.

使用 AlphaFold2、RoseTTAFold2 和 ESMFold 对离子通道进行结构建模。
离子通道在人体生理中起着关键作用,也是药物发现的重要目标。离子通道的原子尺度结构为从根本上了解通道门控和调控的分子机制提供了宝贵的见解。最近,基于深度学习的计算方法(如 AlphaFold、RoseTTAFold 和 ESMFold)取得了突破性进展,改变了蛋白质结构预测和设计研究。我们回顾了 AlphaFold、RoseTTAFold 和 ESMFold 在离子通道结构建模中的应用,使用的是具有代表性的电压门控离子通道,包括人类电压门控钠(NaV)通道--NaV1.8、人类电压门控钙(CaV)通道--CaV1.1 和人类电压门控钾(KV)通道--KV1.3。我们将 NaV1.8、CaV1.1 和 KV1.3 的 AlphaFold、RoseTTAFold 和 ESMFold 结构模型与相应的冷冻电子显微镜结构进行了比较,以评估它们之间的异同细节。我们的研究结果揭示了当前基于深度学习的离子通道结构建模计算方法的优势和局限性,为指导离子通道研究的未来应用提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信