Junbin Peng, Haojie Li, Fang Tong, Jinlong Hu, Min Li, Gan Chen, Dongquan Liu, Jinshan Liu, Rui Wang, Hongyu Xu, Xuanxuan Li, Xinguo Zhong, Jiaming Yao, Baoqiang Cao
{"title":"Methylation changes of liver DNA during the formation of gallstones.","authors":"Junbin Peng, Haojie Li, Fang Tong, Jinlong Hu, Min Li, Gan Chen, Dongquan Liu, Jinshan Liu, Rui Wang, Hongyu Xu, Xuanxuan Li, Xinguo Zhong, Jiaming Yao, Baoqiang Cao","doi":"10.2217/epi-2023-0391","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> To explore the overall methylation changes in liver tissues during the formation of gallstones, as well as the key pathways and genes involved in the process. <b>Methods:</b> Reduced-representation bisulfite sequencing and RNA sequencing were conducted on the liver tissues of mice with gallstones and control normal mice. <b>Results:</b> A total of 8705 differentially methylated regions in CpG and 1410 differentially expressed genes were identified. The joint analysis indicated that aberrant DNA methylation may be associated with dysregulated gene expression in key pathways such as cholesterol metabolism and bile secretion. <b>Conclusion:</b> We propose for the first time that methylation changes in some key pathway genes in liver tissue may be involved in the formation of gallstones.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160444/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2217/epi-2023-0391","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: To explore the overall methylation changes in liver tissues during the formation of gallstones, as well as the key pathways and genes involved in the process. Methods: Reduced-representation bisulfite sequencing and RNA sequencing were conducted on the liver tissues of mice with gallstones and control normal mice. Results: A total of 8705 differentially methylated regions in CpG and 1410 differentially expressed genes were identified. The joint analysis indicated that aberrant DNA methylation may be associated with dysregulated gene expression in key pathways such as cholesterol metabolism and bile secretion. Conclusion: We propose for the first time that methylation changes in some key pathway genes in liver tissue may be involved in the formation of gallstones.
期刊介绍:
Epigenomics provides the forum to address the rapidly progressing research developments in this ever-expanding field; to report on the major challenges ahead and critical advances that are propelling the science forward. The journal delivers this information in concise, at-a-glance article formats – invaluable to a time constrained community.
Substantial developments in our current knowledge and understanding of genomics and epigenetics are constantly being made, yet this field is still in its infancy. Epigenomics provides a critical overview of the latest and most significant advances as they unfold and explores their potential application in the clinical setting.