Complexified Synchrony

Seungjae Lee, Lucas Braun, Frieder Bönisch, Malte Schröder, Moritz Thümler, Marc Timme
{"title":"Complexified Synchrony","authors":"Seungjae Lee, Lucas Braun, Frieder Bönisch, Malte Schröder, Moritz Thümler, Marc Timme","doi":"arxiv-2403.02006","DOIUrl":null,"url":null,"abstract":"The Kuramoto model and its generalizations have been broadly employed to\ncharacterize and mechanistically understand various collective dynamical\nphenomena, especially the emergence of synchrony among coupled oscillators.\nDespite almost five decades of research, many questions remain open, in\nparticular for finite-size systems. Here, we generalize recent work [Phys. Rev.\nLett. 130, 187201 (2023)] on the finite-size Kuramoto model with its state\nvariables analytically continued to the complex domain and also complexify its\nsystem parameters. Intriguingly, systems of two units with purely imaginary\ncoupling do not actively synchronize even for arbitrarily large magnitudes of\nthe coupling strengths, $|K| \\rightarrow \\infty$, but exhibit conservative\ndynamics with asynchronous rotations or librations for all $|K|$. For generic\ncomplex coupling, both, traditional phase-locked states and asynchronous states\ngeneralize to complex locked states, fixed points off the real subspace that\nexist even for arbitrarily weak coupling. We analyze a new collective mode of\nrotations exhibiting finite, yet arbitrarily large winding numbers. Numerical\nsimulations for large networks indicate a novel form of discontinuous phase\ntransition. We close by pointing to a range of exciting questions for future\nresearch.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"129 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.02006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Kuramoto model and its generalizations have been broadly employed to characterize and mechanistically understand various collective dynamical phenomena, especially the emergence of synchrony among coupled oscillators. Despite almost five decades of research, many questions remain open, in particular for finite-size systems. Here, we generalize recent work [Phys. Rev. Lett. 130, 187201 (2023)] on the finite-size Kuramoto model with its state variables analytically continued to the complex domain and also complexify its system parameters. Intriguingly, systems of two units with purely imaginary coupling do not actively synchronize even for arbitrarily large magnitudes of the coupling strengths, $|K| \rightarrow \infty$, but exhibit conservative dynamics with asynchronous rotations or librations for all $|K|$. For generic complex coupling, both, traditional phase-locked states and asynchronous states generalize to complex locked states, fixed points off the real subspace that exist even for arbitrarily weak coupling. We analyze a new collective mode of rotations exhibiting finite, yet arbitrarily large winding numbers. Numerical simulations for large networks indicate a novel form of discontinuous phase transition. We close by pointing to a range of exciting questions for future research.
复杂化同步
仓本模型及其广义模型被广泛用于描述和从机理上理解各种集体动力学现象,特别是耦合振荡器之间同步现象的出现。尽管已经进行了近五十年的研究,但许多问题仍然悬而未决,特别是对于有限尺寸系统。在这里,我们将最近关于有限尺寸仓本模型的工作[Phys. Rev.Lett. 130, 187201 (2023)]及其状态变量分析性地延续到复数域,并将其系统参数复杂化。耐人寻味的是,即使耦合强度 $|K| \rightarrow \infty$为任意大的量级,具有纯粹虚耦合的两个单元系统也不会主动同步,而是在所有 $|K|$ 条件下表现出具有异步旋转或枰动的保守动力学。对于一般的复数耦合,传统的锁相态和异步态都会泛化为复数锁相态,即实子空间的定点,即使对于任意弱的耦合也是存在的。我们分析了一种新的集体旋转模式,它表现出有限但任意大的绕组数。对大型网络的数值模拟表明,这是一种新型的不连续相位转换形式。最后,我们指出了未来研究中一系列令人兴奋的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信