Sparse estimation of linear model via Bayesian method $$^*$$

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
{"title":"Sparse estimation of linear model via Bayesian method $$^*$$","authors":"","doi":"10.1007/s00180-024-01474-5","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>This paper considers the sparse estimation problem of regression coefficients in the linear model. Note that the global–local shrinkage priors do not allow the regression coefficients to be truly estimated as zero, we propose three threshold rules and compare their contraction properties, and also tandem those rules with the popular horseshoe prior and the horseshoe+ prior that are normally regarded as global–local shrinkage priors. The hierarchical prior expressions for the horseshoe prior and the horseshoe+ prior are obtained, and the full conditional posterior distributions for all parameters for algorithm implementation are also given. Simulation studies indicate that the horseshoe/horseshoe+ prior with the threshold rules are both superior to the spike-slab models. Finally, a real data analysis demonstrates the effectiveness of variable selection of the proposed method.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"35 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01474-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the sparse estimation problem of regression coefficients in the linear model. Note that the global–local shrinkage priors do not allow the regression coefficients to be truly estimated as zero, we propose three threshold rules and compare their contraction properties, and also tandem those rules with the popular horseshoe prior and the horseshoe+ prior that are normally regarded as global–local shrinkage priors. The hierarchical prior expressions for the horseshoe prior and the horseshoe+ prior are obtained, and the full conditional posterior distributions for all parameters for algorithm implementation are also given. Simulation studies indicate that the horseshoe/horseshoe+ prior with the threshold rules are both superior to the spike-slab models. Finally, a real data analysis demonstrates the effectiveness of variable selection of the proposed method.

通过贝叶斯方法对线性模型进行稀疏估计 $$^*$$
摘要 本文考虑了线性模型中回归系数的稀疏估计问题。我们提出了三种阈值规则,并比较了它们的收缩特性,还将这些规则与通常被视为全局局部收缩先验的流行的马蹄先验和马蹄+先验进行了串联。我们得到了马蹄先验和马蹄+先验的层次先验表达式,并给出了用于算法实现的所有参数的全条件后验分布。模拟研究表明,带有阈值规则的马蹄先验/马蹄+先验都优于尖峰板模型。最后,实际数据分析证明了所提方法在变量选择方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信