{"title":"Networked Industrial Control Device Asset Identification Method Based on Improved Decision Tree","authors":"Wei Yang, Yushan Fang, Xiaoming Zhou, Yijia Shen, Wenjie Zhang, Yu Yao","doi":"10.1007/s10922-024-09805-z","DOIUrl":null,"url":null,"abstract":"<p>Industrial control device asset identification is essential to the active defense and situational awareness system for industrial control network security. However, industrial control device asset information is challenging to obtain, and efficient asset detection models and identification methods are urgently needed. Existing active detection techniques send many packets to the system, affecting device operation, while passive identification can only analyze publicly available industrial control data. Based on this problem, we propose an asset identification method including networked industrial control device asset detection, fingerprint feature extraction and classification. The proposed method use TCP SYN semi-networked probing in the asset detection phase to reduce the number of packets sent and remove honeypot device data. The fingerprint feature extraction phase considers the periodicity and long-term stability characteristics of industrial control device and proposes a set of asset fingerprint feature combinations. The classification phase uses an improved decision tree algorithm based on feature weight correction and uses AdaBoost ensemble learning algorithm to strengthen the classification model. The experimental results show that the detection technique proposed by our method has the advantages of high efficiency, low frequency and noise immunity.</p>","PeriodicalId":50119,"journal":{"name":"Journal of Network and Systems Management","volume":"25 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Systems Management","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10922-024-09805-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Industrial control device asset identification is essential to the active defense and situational awareness system for industrial control network security. However, industrial control device asset information is challenging to obtain, and efficient asset detection models and identification methods are urgently needed. Existing active detection techniques send many packets to the system, affecting device operation, while passive identification can only analyze publicly available industrial control data. Based on this problem, we propose an asset identification method including networked industrial control device asset detection, fingerprint feature extraction and classification. The proposed method use TCP SYN semi-networked probing in the asset detection phase to reduce the number of packets sent and remove honeypot device data. The fingerprint feature extraction phase considers the periodicity and long-term stability characteristics of industrial control device and proposes a set of asset fingerprint feature combinations. The classification phase uses an improved decision tree algorithm based on feature weight correction and uses AdaBoost ensemble learning algorithm to strengthen the classification model. The experimental results show that the detection technique proposed by our method has the advantages of high efficiency, low frequency and noise immunity.
期刊介绍:
Journal of Network and Systems Management, features peer-reviewed original research, as well as case studies in the fields of network and system management. The journal regularly disseminates significant new information on both the telecommunications and computing aspects of these fields, as well as their evolution and emerging integration. This outstanding quarterly covers architecture, analysis, design, software, standards, and migration issues related to the operation, management, and control of distributed systems and communication networks for voice, data, video, and networked computing.