Analysing Utterances in LLM-based User Simulation for Conversational Search

IF 7.2 4区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ivan Sekulić, Mohammad Aliannejadi, Fabio Crestani
{"title":"Analysing Utterances in LLM-based User Simulation for Conversational Search","authors":"Ivan Sekulić, Mohammad Aliannejadi, Fabio Crestani","doi":"10.1145/3650041","DOIUrl":null,"url":null,"abstract":"<p>Clarifying the underlying user information need by asking clarifying questions is an important feature of modern conversational search systems. However, evaluation of such systems through answering prompted clarifying questions requires significant human effort, which can be time-consuming and expensive. In our recent work, we proposed an approach to tackle these issues with a user simulator, <i>USi</i>. Given a description of an information need, <i>USi</i> is capable of automatically answering clarifying questions about the topic throughout the search session. However, while the answers generated by <i>USi</i> are both in line with the underlying information need and in natural language, a deeper understanding of such utterances is lacking. Thus, in this work, we explore utterance formulation of large language model (LLM) based user simulators. To this end, we first analyze the differences between <i>USi</i>, based on GPT-2, and the next generation of generative LLMs, such as GPT-3. Then, to gain a deeper understanding of LLM-based utterance generation, we compare the generated answers to the recently proposed set of patterns of human-based query reformulations. Finally, we discuss potential applications, as well as limitations, of LLM-based user simulators and outline promising directions for future work on the topic.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3650041","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Clarifying the underlying user information need by asking clarifying questions is an important feature of modern conversational search systems. However, evaluation of such systems through answering prompted clarifying questions requires significant human effort, which can be time-consuming and expensive. In our recent work, we proposed an approach to tackle these issues with a user simulator, USi. Given a description of an information need, USi is capable of automatically answering clarifying questions about the topic throughout the search session. However, while the answers generated by USi are both in line with the underlying information need and in natural language, a deeper understanding of such utterances is lacking. Thus, in this work, we explore utterance formulation of large language model (LLM) based user simulators. To this end, we first analyze the differences between USi, based on GPT-2, and the next generation of generative LLMs, such as GPT-3. Then, to gain a deeper understanding of LLM-based utterance generation, we compare the generated answers to the recently proposed set of patterns of human-based query reformulations. Finally, we discuss potential applications, as well as limitations, of LLM-based user simulators and outline promising directions for future work on the topic.

分析基于 LLM 的对话式搜索用户模拟中的语句
通过提出澄清性问题来明确用户的基本信息需求是现代会话搜索系统的一个重要特征。然而,通过回答提示性澄清问题来评估此类系统需要大量人力,既费时又费钱。在我们最近的工作中,我们提出了一种通过用户模拟器 USi 来解决这些问题的方法。给定信息需求描述后,USi 能够在整个搜索会话过程中自动回答有关主题的澄清问题。然而,虽然 USi 生成的答案既符合基本信息需求,又使用了自然语言,但对这些语句却缺乏更深入的理解。因此,在这项工作中,我们探索了基于大语言模型(LLM)的用户模拟器的语句表述。为此,我们首先分析了基于 GPT-2 的 USi 与下一代生成式 LLM(如 GPT-3)之间的差异。然后,为了加深对基于 LLM 的语篇生成的理解,我们将生成的答案与最近提出的基于人的查询重构模式集进行了比较。最后,我们讨论了基于 LLM 的用户模拟器的潜在应用和局限性,并概述了该主题的未来工作方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Intelligent Systems and Technology
ACM Transactions on Intelligent Systems and Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
9.30
自引率
2.00%
发文量
131
期刊介绍: ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world. ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信