In-suit doping Ta element in HNbWO6 nanosheets for enhancing photocatalytic performance

IF 1.1 4区 物理与天体物理 Q4 NANOSCIENCE & NANOTECHNOLOGY
Jichao Zhu, Hongbo Zhao, Lifang Hu, Jie He
{"title":"In-suit doping Ta element in HNbWO6 nanosheets for enhancing photocatalytic performance","authors":"Jichao Zhu, Hongbo Zhao, Lifang Hu, Jie He","doi":"10.1117/1.jnp.18.016009","DOIUrl":null,"url":null,"abstract":"In this work, HNbxTa1-xWO6 (x=0, 0.3, 0.5, 1) nanosheets were successfully synthesized by an in-suit doping strategy at the molecular level and an exfoliation-restacking process. The crystal phase structures, surface morphologies, and chemical components of the obtained HNbxTa1-xWO6 nanosheets were systematically characterized by X-ray diffraction patterns, laser Raman spectroscopy, scanning electron microscopy, ultraviolet–visible diffuse reflectance spectroscopy and N2 adsorption-desorption measurements. The adsorption and photocatalytic degradation of RhB aqueous solution under dark and simulated sunlight irradiation were investigated, respectively. The adsorption results demonstrated that the large total pore volume and strong acidity are favorable for the adsorption of RhB, and the photocatalytic results showed that the introduction of Ta element greatly improved the photocatalytic activities of the as-prepared HNbxTa1-xWO6 nanosheets. Among the HNbxTa1-xWO6 nanosheets, HTaWO6 nanosheet has the highest photocatalytic activity for RhB degradation with a rate constant of 1.62×10−2 min−1. According to the photocatalytic result, it can be concluded that the use of in-suit doping to control the energy band structure is an effective method for designing efficient photocatalysts.","PeriodicalId":16449,"journal":{"name":"Journal of Nanophotonics","volume":"2012 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.jnp.18.016009","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, HNbxTa1-xWO6 (x=0, 0.3, 0.5, 1) nanosheets were successfully synthesized by an in-suit doping strategy at the molecular level and an exfoliation-restacking process. The crystal phase structures, surface morphologies, and chemical components of the obtained HNbxTa1-xWO6 nanosheets were systematically characterized by X-ray diffraction patterns, laser Raman spectroscopy, scanning electron microscopy, ultraviolet–visible diffuse reflectance spectroscopy and N2 adsorption-desorption measurements. The adsorption and photocatalytic degradation of RhB aqueous solution under dark and simulated sunlight irradiation were investigated, respectively. The adsorption results demonstrated that the large total pore volume and strong acidity are favorable for the adsorption of RhB, and the photocatalytic results showed that the introduction of Ta element greatly improved the photocatalytic activities of the as-prepared HNbxTa1-xWO6 nanosheets. Among the HNbxTa1-xWO6 nanosheets, HTaWO6 nanosheet has the highest photocatalytic activity for RhB degradation with a rate constant of 1.62×10−2 min−1. According to the photocatalytic result, it can be concluded that the use of in-suit doping to control the energy band structure is an effective method for designing efficient photocatalysts.
在 HNbWO6 纳米片中掺入 Ta 元素以提高光催化性能
在这项工作中,通过分子水平的内服掺杂策略和剥离-重堆积工艺,成功合成了 HNbxTa1-xWO6 (x=0, 0.3, 0.5, 1)纳米片。通过 X 射线衍射图谱、激光拉曼光谱、扫描电子显微镜、紫外-可见光漫反射光谱和 N2 吸附-解吸测量,对所获得的 HNbxTa1-xWO6 纳米片的晶相结构、表面形貌和化学成分进行了系统表征。分别研究了 RhB 水溶液在黑暗和模拟阳光照射下的吸附和光催化降解情况。吸附结果表明,HNbxTa1-xWO6纳米片具有较大的总孔隙率和较强的酸性,有利于RhB的吸附;光催化结果表明,Ta元素的引入大大提高了HNbxTa1-xWO6纳米片的光催化活性。在HNbxTa1-xWO6纳米片中,HTaWO6纳米片降解RhB的光催化活性最高,速率常数为1.62×10-2 min-1。根据光催化结果,可以得出结论:利用内服掺杂控制能带结构是设计高效光催化剂的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanophotonics
Journal of Nanophotonics 工程技术-光学
CiteScore
2.60
自引率
6.70%
发文量
42
审稿时长
3 months
期刊介绍: The Journal of Nanophotonics publishes peer-reviewed papers focusing on the fabrication and application of nanostructures that facilitate the generation, propagation, manipulation, and detection of light from the infrared to the ultraviolet regimes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信