New cluster algebras from old: integrability beyond Zamolodchikov periodicity

Andrew N. W. Hone, Wookyung Kim, Takafumi Mase
{"title":"New cluster algebras from old: integrability beyond Zamolodchikov periodicity","authors":"Andrew N. W. Hone, Wookyung Kim, Takafumi Mase","doi":"arxiv-2403.00721","DOIUrl":null,"url":null,"abstract":"We consider discrete dynamical systems obtained as deformations of mutations\nin cluster algebras associated with finite-dimensional simple Lie algebras. The\noriginal (undeformed) dynamical systems provide the simplest examples of\nZamolodchikov periodicity: they are affine birational maps for which every\norbit is periodic with the same period. Following on from preliminary work by\none of us with Kouloukas, here we present integrable maps obtained from\ndeformations of cluster mutations related to the following simple root systems:\n$A_3$, $B_2$, $B_3$ and $D_4$. We further show how new cluster algebras arise,\nby considering Laurentification, that is, a lifting to a higher-dimensional map\nexpressed in a set of new variables (tau functions), for which the dynamics\nexhibits the Laurent property. For the integrable map obtained by deformation\nof type $A_3$, which already appeared in our previous work, we show that there\nis a commuting map of Quispel-Roberts-Thompson (QRT) type which is built from a\ncomposition of mutations and a permutation applied to the same cluster algebra\nof rank 6, with an additional 2 frozen variables. Furthermore, both the\ndeformed $A_3$ map and the QRT map correspond to addition of a point in the\nMordell-Weil group of a rational elliptic surface of rank two, and the\nunderlying cluster algebra comes from a quiver that mutation equivalent to the\n$q$-Painlev\\'e III quiver found by Okubo. The deformed integrable maps of types\n$B_2$, $B_3$ and $D_4$ are also related to elliptic surfaces.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.00721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider discrete dynamical systems obtained as deformations of mutations in cluster algebras associated with finite-dimensional simple Lie algebras. The original (undeformed) dynamical systems provide the simplest examples of Zamolodchikov periodicity: they are affine birational maps for which every orbit is periodic with the same period. Following on from preliminary work by one of us with Kouloukas, here we present integrable maps obtained from deformations of cluster mutations related to the following simple root systems: $A_3$, $B_2$, $B_3$ and $D_4$. We further show how new cluster algebras arise, by considering Laurentification, that is, a lifting to a higher-dimensional map expressed in a set of new variables (tau functions), for which the dynamics exhibits the Laurent property. For the integrable map obtained by deformation of type $A_3$, which already appeared in our previous work, we show that there is a commuting map of Quispel-Roberts-Thompson (QRT) type which is built from a composition of mutations and a permutation applied to the same cluster algebra of rank 6, with an additional 2 frozen variables. Furthermore, both the deformed $A_3$ map and the QRT map correspond to addition of a point in the Mordell-Weil group of a rational elliptic surface of rank two, and the underlying cluster algebra comes from a quiver that mutation equivalent to the $q$-Painlev\'e III quiver found by Okubo. The deformed integrable maps of types $B_2$, $B_3$ and $D_4$ are also related to elliptic surfaces.
新簇代数源于旧簇代数:超越扎莫洛奇科夫周期性的可整性
我们考虑的离散动力系统是与有限维简单李代数相关的簇代数中突变的变形。原始(未变形)动力系统提供了扎莫洛奇科夫周期性的最简单例子:它们是仿射双态映射,其中每个轨道都具有相同周期的周期性。继我们中的一人与库鲁卡斯(Kouloukas)的初步工作之后,我们在此提出了从与下列简单根系统有关的簇突变变形中获得的可积分映射:$A_3$、$B_2$、$B_3$ 和 $D_4$。通过考虑劳伦特化,即提升到用一组新变量(tau 函数)表示的高维映射,我们进一步说明了新的簇代数是如何产生的,对于这些簇代数,动态性质表现为劳伦特性质。对于在我们之前的工作中已经出现过的由$A_3$类型变形得到的可积分映射,我们证明了存在一个奎斯韦尔-罗伯茨-汤普森(QRT)类型的换向映射,它是由突变的组合和应用于同一秩为6的簇代数的置换建立的,并增加了2个冻结变量。此外,变形的 $A_3$ 映射和 QRT 映射都对应于在秩为 2 的有理椭圆曲面的莫德尔-韦尔群中增加一个点,其基础簇代数来自于一个四元组,该四元组的突变等价于大久保发现的 $q$-Painlev\'e III 四元组。B_2元、B_3元和D_4元类型的变形可积分映射也与椭圆曲面有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信