{"title":"Generation of all-optical Walsh–Hadamard code using silicon micro-ring resonator","authors":"Manjur Hossain, Kalimuddin Mondal, Jayanta Kumar Rakshit, Surajit Mandal, Amit Kumar Goyal, Yehia Massoud","doi":"10.1117/1.jnp.18.016010","DOIUrl":null,"url":null,"abstract":"Silicon micro-ring resonator-based generation of all-optical (2×2) Walsh–Hadamard code is proposed. The energy-efficient, ultra-high-speed, and compact nature of micro-ring resonator-based devices is essential for optical computing. Both MATLAB and the Ansys Lumerical finite difference time domain (FDTD) approach are used to implement the generation of all-optical (2×2) Walsh–Hadamard code. The proposed design is simulated at about 260 Gbps. In the recommended circuit, the needed pump power for switching is merely 0.84 mW, which is extremely little in contrast. The “figure of merits” of the proposed design is evaluated through numerical simulation. The obtained contrast ratio and extinction ratio are considerably greater at 25.24 and 14.63 dB, respectively. On the other hand, the achieved amplitude modulation of 0.13 dB is extremely low. The on-off ratio for a single micro-ring resonator is 36.9 dB.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.jnp.18.016010","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon micro-ring resonator-based generation of all-optical (2×2) Walsh–Hadamard code is proposed. The energy-efficient, ultra-high-speed, and compact nature of micro-ring resonator-based devices is essential for optical computing. Both MATLAB and the Ansys Lumerical finite difference time domain (FDTD) approach are used to implement the generation of all-optical (2×2) Walsh–Hadamard code. The proposed design is simulated at about 260 Gbps. In the recommended circuit, the needed pump power for switching is merely 0.84 mW, which is extremely little in contrast. The “figure of merits” of the proposed design is evaluated through numerical simulation. The obtained contrast ratio and extinction ratio are considerably greater at 25.24 and 14.63 dB, respectively. On the other hand, the achieved amplitude modulation of 0.13 dB is extremely low. The on-off ratio for a single micro-ring resonator is 36.9 dB.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.