{"title":"Approximate primal-dual fixed-point based langevin algorithms for non-smooth convex potentials","authors":"Ziruo Cai, Jinglai Li, Xiaoqun Zhang","doi":"10.4310/cms.2024.v22.n3.a3","DOIUrl":null,"url":null,"abstract":"The Langevin algorithms are frequently used to sample the posterior distributions in Bayesian inference. In many practical problems, however, the posterior distributions often consist of non-differentiable components, posing challenges for the standard Langevin algorithms, as they require to evaluate the gradient of the energy function in each iteration. To this end, a popular remedy is to utilize the proximity operator, and as a result one needs to solve a proximity subproblem in each iteration. The conventional practice is to solve the subproblems accurately, which can be exceedingly expensive, as the subproblem needs to be solved in each iteration. We propose an approximate primal-dual fixed-point algorithm for solving the subproblem, which only seeks an approximate solution of the subproblem and therefore reduces the computational cost considerably. We provide theoretical analysis of the proposed method and also demonstrate its performance with numerical examples.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"62 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n3.a3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The Langevin algorithms are frequently used to sample the posterior distributions in Bayesian inference. In many practical problems, however, the posterior distributions often consist of non-differentiable components, posing challenges for the standard Langevin algorithms, as they require to evaluate the gradient of the energy function in each iteration. To this end, a popular remedy is to utilize the proximity operator, and as a result one needs to solve a proximity subproblem in each iteration. The conventional practice is to solve the subproblems accurately, which can be exceedingly expensive, as the subproblem needs to be solved in each iteration. We propose an approximate primal-dual fixed-point algorithm for solving the subproblem, which only seeks an approximate solution of the subproblem and therefore reduces the computational cost considerably. We provide theoretical analysis of the proposed method and also demonstrate its performance with numerical examples.
期刊介绍:
Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.