On the Invariant Subspace Problem via Universal Toeplitz Operators on the Hardy Space Over the Bidisk

João Marcos R. do Carmo, Marcos S. Ferreira
{"title":"On the Invariant Subspace Problem via Universal Toeplitz Operators on the Hardy Space Over the Bidisk","authors":"João Marcos R. do Carmo, Marcos S. Ferreira","doi":"10.1007/s00574-024-00386-8","DOIUrl":null,"url":null,"abstract":"<p>The <i>invariant subspace problem</i> (ISP) for Hilbert spaces asks if every bounded linear operator has a non-trivial closed invariant subspace. Due to the existence of universal operators (in the sense of Rota) the ISP can be solved by proving that every minimal invariant subspace of a universal operator is one dimensional. In this work, we obtain conditions for <span>\\(T^{*}_{\\varphi }|_{M}\\)</span> to have a non-trivial subspace where <span>\\(M\\subset H^{2}({\\mathbb {D}}^{2})\\)</span> is an invariant subspace of the Toeplitz operator <span>\\(T_{\\varphi }^{*}\\)</span> on the Hardy space over the bidisk <span>\\(H^{2}({\\mathbb {D}}^{2})\\)</span> induced by the symbol <span>\\(\\varphi \\in H^{\\infty }({\\mathbb {D}})\\)</span>. We then use this fact to obtain sufficient conditions for the ISP to be true.</p>","PeriodicalId":501417,"journal":{"name":"Bulletin of the Brazilian Mathematical Society, New Series","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Brazilian Mathematical Society, New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00574-024-00386-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The invariant subspace problem (ISP) for Hilbert spaces asks if every bounded linear operator has a non-trivial closed invariant subspace. Due to the existence of universal operators (in the sense of Rota) the ISP can be solved by proving that every minimal invariant subspace of a universal operator is one dimensional. In this work, we obtain conditions for \(T^{*}_{\varphi }|_{M}\) to have a non-trivial subspace where \(M\subset H^{2}({\mathbb {D}}^{2})\) is an invariant subspace of the Toeplitz operator \(T_{\varphi }^{*}\) on the Hardy space over the bidisk \(H^{2}({\mathbb {D}}^{2})\) induced by the symbol \(\varphi \in H^{\infty }({\mathbb {D}})\). We then use this fact to obtain sufficient conditions for the ISP to be true.

通过双盘哈代空间上的通用托普利兹算子论不变子空间问题
希尔伯特空间的不变子空间问题(ISP)询问是否每个有界线性算子都有一个非三维封闭不变子空间。由于普遍算子的存在(在罗塔的意义上),ISP 可以通过证明普遍算子的每个最小不变子空间都是一维来解决。在这项工作中(T^{*}_{\varphi}|_{M}\)有一个非三维子空间的条件。其中 \(M\subset H^{2}({\mathbb {D}}^{2})\ 是托普利兹算子 \(T_{\varphi }^{*}\) 的不变子空间)是符号 \(\varphi \in H^{infty }({\mathbb {D}}^{2})\) 所诱导的双盘 \(H^{2}({\mathbb {D}}^{2})\) 上的哈代空间的不变子空间。然后,我们利用这一事实得到 ISP 为真的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信