Extrapolation to mixed Herz spaces and its applications

Pub Date : 2024-03-03 DOI:10.1002/mana.202100134
Mingquan Wei
{"title":"Extrapolation to mixed Herz spaces and its applications","authors":"Mingquan Wei","doi":"10.1002/mana.202100134","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we extend the extrapolation theory to mixed Herz spaces <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mover>\n <mi>K</mi>\n <mo>̇</mo>\n </mover>\n <mover>\n <mi>q</mi>\n <mo>⃗</mo>\n </mover>\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\dot{K}^{\\alpha,p}_{\\vec{q}}(\\mathbb {R}^n)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>K</mi>\n <mover>\n <mi>q</mi>\n <mo>⃗</mo>\n </mover>\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$K^{\\alpha,p}_{\\vec{q}}(\\mathbb {R}^n)$</annotation>\n </semantics></math>. To prove the main result, we first study the dual spaces of mixed Herz spaces, and then give the boundedness of the Hardy–Littlewood maximal operator on mixed Herz spaces. By using the extrapolation theorems, we obtain the boundedness of many integral operators on mixed Herz spaces. We also give a new characterization of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>bounded</mi>\n <mspace></mspace>\n <mi>mean</mi>\n <mspace></mspace>\n <mi>oscillation</mi>\n <mspace></mspace>\n <mi>space</mi>\n </mrow>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mi>BMO</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\rm{bounded\\ mean\\ oscillation\\ space}}\\ ({\\rm BMO})(\\mathbb {R}^n)$</annotation>\n </semantics></math> via the boundedness of commutators of some operators on mixed Herz spaces.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202100134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we extend the extrapolation theory to mixed Herz spaces K ̇ q α , p ( R n ) $\dot{K}^{\alpha,p}_{\vec{q}}(\mathbb {R}^n)$ and K q α , p ( R n ) $K^{\alpha,p}_{\vec{q}}(\mathbb {R}^n)$ . To prove the main result, we first study the dual spaces of mixed Herz spaces, and then give the boundedness of the Hardy–Littlewood maximal operator on mixed Herz spaces. By using the extrapolation theorems, we obtain the boundedness of many integral operators on mixed Herz spaces. We also give a new characterization of bounded mean oscillation space ( BMO ) ( R n ) ${\rm{bounded\ mean\ oscillation\ space}}\ ({\rm BMO})(\mathbb {R}^n)$ via the boundedness of commutators of some operators on mixed Herz spaces.

分享
查看原文
混合赫兹空间的外推法及其应用
在本文中,我们将外推法理论扩展到混合赫兹空间和.赫兹空间。为了证明主要结果,我们首先研究了混合赫兹空间的对偶空间,然后给出了混合赫兹空间上哈迪-利特尔伍德最大算子的有界性。通过使用外推定理,我们得到了混合赫兹空间上许多积分算子的有界性。我们还给出了通过混合赫兹空间上一些算子换元的有界性的新特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信