Opinion Mining on Social Media Text Using Optimized Deep Belief Networks

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
S. Vinayaga Vadivu, P. Nagaraj, B. S. Murugan
{"title":"Opinion Mining on Social Media Text Using Optimized Deep Belief Networks","authors":"S. Vinayaga Vadivu, P. Nagaraj, B. S. Murugan","doi":"10.1145/3649502","DOIUrl":null,"url":null,"abstract":"<p>In the digital world, most people spend their leisure and precious time on social media networks such as Facebook, Twitter. Instagram, and so on. Moreover, users post their views of products, services, political parties on their social sites. This information is viewed by many other users and brands. With the aid of these posts and tweets, the emotions, polarities of users are extracted to obtain the opinion about products or services. To analyze these posts sentiment analysis or opinion mining techniques are applied. Subsequently, this field rapidly attracts many researchers to conduct their research work due to the availability of an enormous number of data on social media networks. Further, this method can also be used to analyze the text to extract the sentiments which are classified as moderate, neutral, low extreme, and high extreme. However, the extraction of sentiment is an arduous one from the social media datasets, since it includes formal and informal texts, emojis, symbols. Hence to extract the feature vector from the accessed social media datasets and to perform accurate classification to group the texts based on the appropriate sentiments we proposed a novel method known as, Deep Belief Network-based Dynamic Grouping-based Cooperative optimization method DBN based DGCO. Exploiting this method the data are preprocessed to attain the required format of text and henceforth the feature vectors are extracted by the ICS algorithm. Furthermore, the extracted datasets are classified and grouped into moderate, neutral, low extreme, and high extreme with DBN based DGCO method. For experimental analysis, we have taken two social media datasets and analyzed the performance of the proposed method in terms of performance metrics such as accuracy/precision, recall, F1 Score, and ROC with HEMOS, WOA-SITO, PDCNN, and NB-LSVC state-of-art works. The acquired accuracy/precision, recall, and F1 Score, of our proposed ICS-DBN-DGCO method, are 89%, 80%, 98.2%, respectively.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3649502","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the digital world, most people spend their leisure and precious time on social media networks such as Facebook, Twitter. Instagram, and so on. Moreover, users post their views of products, services, political parties on their social sites. This information is viewed by many other users and brands. With the aid of these posts and tweets, the emotions, polarities of users are extracted to obtain the opinion about products or services. To analyze these posts sentiment analysis or opinion mining techniques are applied. Subsequently, this field rapidly attracts many researchers to conduct their research work due to the availability of an enormous number of data on social media networks. Further, this method can also be used to analyze the text to extract the sentiments which are classified as moderate, neutral, low extreme, and high extreme. However, the extraction of sentiment is an arduous one from the social media datasets, since it includes formal and informal texts, emojis, symbols. Hence to extract the feature vector from the accessed social media datasets and to perform accurate classification to group the texts based on the appropriate sentiments we proposed a novel method known as, Deep Belief Network-based Dynamic Grouping-based Cooperative optimization method DBN based DGCO. Exploiting this method the data are preprocessed to attain the required format of text and henceforth the feature vectors are extracted by the ICS algorithm. Furthermore, the extracted datasets are classified and grouped into moderate, neutral, low extreme, and high extreme with DBN based DGCO method. For experimental analysis, we have taken two social media datasets and analyzed the performance of the proposed method in terms of performance metrics such as accuracy/precision, recall, F1 Score, and ROC with HEMOS, WOA-SITO, PDCNN, and NB-LSVC state-of-art works. The acquired accuracy/precision, recall, and F1 Score, of our proposed ICS-DBN-DGCO method, are 89%, 80%, 98.2%, respectively.

使用优化的深度信念网络对社交媒体文本进行观点挖掘
在数字世界里,大多数人都把闲暇和宝贵的时间花在社交媒体网络上,如 Facebook、Twitter、Instagram 等。Instagram 等。此外,用户还会在社交网站上发表他们对产品、服务和政党的看法。许多其他用户和品牌都会浏览这些信息。借助这些帖子和推文,可以提取用户的情绪和两极分化,从而获得对产品或服务的看法。为了分析这些帖子,需要应用情感分析或意见挖掘技术。随后,由于社交媒体网络上存在大量数据,这一领域迅速吸引了许多研究人员开展研究工作。此外,这种方法还可用于分析文本以提取情感,情感可分为温和、中性、低极端和高极端。然而,从社交媒体数据集中提取情感是一项艰巨的工作,因为其中包括正式和非正式文本、表情符号和符号。因此,为了从访问的社交媒体数据集中提取特征向量,并根据适当的情感对文本进行准确分类,我们提出了一种新方法,即基于深度信网络的动态分组合作优化方法 DBN based DGCO。利用这种方法对数据进行预处理,以获得所需的文本格式,然后通过 ICS 算法提取特征向量。此外,还利用基于 DBN 的 DGCO 方法将提取的数据集分类并分为中等、中性、低极端和高极端。在实验分析中,我们选取了两个社交媒体数据集,并与 HEMOS、WOA-SITO、PDCNN 和 NB-LSVC 等最先进的作品一起,从准确率/精度、召回率、F1 分数和 ROC 等性能指标方面分析了所提方法的性能。我们提出的 ICS-DBN-DGCO 方法获得的准确率/精确率、召回率和 F1 分数分别为 89%、80% 和 98.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
15.00%
发文量
241
期刊介绍: The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to: -Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc. -Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc. -Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition. -Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc. -Machine Translation involving Asian or low-resource languages. -Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc. -Information Extraction and Filtering: including automatic abstraction, user profiling, etc. -Speech processing: including text-to-speech synthesis and automatic speech recognition. -Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc. -Cross-lingual information processing involving Asian or low-resource languages. -Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信