{"title":"Stability of contact lines in 2D stationary Benard convection","authors":"Yunrui Zheng","doi":"10.4310/cms.2024.v22.n3.a6","DOIUrl":null,"url":null,"abstract":"We consider the evolution of contact lines for thermal convection of viscous fluids in a two-dimensional open-top vessel. The domain is bounded above by a free moving boundary and otherwise by the solid wall of a vessel. The dynamics of the fluid are governed by the incompressible Boussinesq approximation under the influence of gravity, and the interface between fluid and air is under the effect of capillary forces. Here we develop global well posedness theory in the framework of nonlinear energy methods for the initial data sufficiently close to equilibrium. Moreover, the solutions decay to equilibrium at an exponential rate. Our methods are mainly based on the elliptic analysis near corners and <i>a priori</i> estimates of a geometric formulation of the Boussinesq equations.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"93 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n3.a6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the evolution of contact lines for thermal convection of viscous fluids in a two-dimensional open-top vessel. The domain is bounded above by a free moving boundary and otherwise by the solid wall of a vessel. The dynamics of the fluid are governed by the incompressible Boussinesq approximation under the influence of gravity, and the interface between fluid and air is under the effect of capillary forces. Here we develop global well posedness theory in the framework of nonlinear energy methods for the initial data sufficiently close to equilibrium. Moreover, the solutions decay to equilibrium at an exponential rate. Our methods are mainly based on the elliptic analysis near corners and a priori estimates of a geometric formulation of the Boussinesq equations.
期刊介绍:
Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.