Precise Tail Behaviour of Some Dirichlet Series

Pub Date : 2024-03-05 DOI:10.1007/s10959-024-01318-4
Alexander Iksanov, Vitali Wachtel
{"title":"Precise Tail Behaviour of Some Dirichlet Series","authors":"Alexander Iksanov, Vitali Wachtel","doi":"10.1007/s10959-024-01318-4","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\eta _1\\)</span>, <span>\\(\\eta _2,\\ldots \\)</span> be independent copies of a random variable <span>\\(\\eta \\)</span> with zero mean and finite variance which is bounded from the right, that is, <span>\\(\\eta \\le b\\)</span> almost surely for some <span>\\(b&gt;0\\)</span>. Considering different types of the asymptotic behaviour of the probability <span>\\(\\mathbb {P}\\{\\eta \\in [b-x,b]\\}\\)</span> as <span>\\(x\\rightarrow 0+\\)</span>, we derive precise tail asymptotics of the random Dirichlet series <span>\\(\\sum _{k\\ge 1}k^{-\\alpha }\\eta _k\\)</span> for <span>\\(\\alpha \\in (1/2, 1]\\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01318-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\eta _1\), \(\eta _2,\ldots \) be independent copies of a random variable \(\eta \) with zero mean and finite variance which is bounded from the right, that is, \(\eta \le b\) almost surely for some \(b>0\). Considering different types of the asymptotic behaviour of the probability \(\mathbb {P}\{\eta \in [b-x,b]\}\) as \(x\rightarrow 0+\), we derive precise tail asymptotics of the random Dirichlet series \(\sum _{k\ge 1}k^{-\alpha }\eta _k\) for \(\alpha \in (1/2, 1]\).

分享
查看原文
某些德里赫利数列的精确尾部行为
让 \(\eta _1\), \(\eta _2,\ldots \)是具有零均值和有限方差的随机变量 \(\eta \)的独立副本,这个随机变量从右边开始是有界的,也就是说,对于某个 \(b>0\) 来说, \(\eta \le b\) 几乎是肯定的。考虑到概率 \(\mathbb {P}\{eta \in [b-x,b]\}) 的不同类型的渐近行为为 \(x\rightarrow 0+\), 我们推导出随机 Dirichlet 数列 \(\sum _{k\ge 1}k^{-\alpha }\eta _k\)对于 \(\alpha \in (1/2, 1]\)的精确尾部渐近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信