Precise Tail Behaviour of Some Dirichlet Series

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Alexander Iksanov, Vitali Wachtel
{"title":"Precise Tail Behaviour of Some Dirichlet Series","authors":"Alexander Iksanov, Vitali Wachtel","doi":"10.1007/s10959-024-01318-4","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\eta _1\\)</span>, <span>\\(\\eta _2,\\ldots \\)</span> be independent copies of a random variable <span>\\(\\eta \\)</span> with zero mean and finite variance which is bounded from the right, that is, <span>\\(\\eta \\le b\\)</span> almost surely for some <span>\\(b&gt;0\\)</span>. Considering different types of the asymptotic behaviour of the probability <span>\\(\\mathbb {P}\\{\\eta \\in [b-x,b]\\}\\)</span> as <span>\\(x\\rightarrow 0+\\)</span>, we derive precise tail asymptotics of the random Dirichlet series <span>\\(\\sum _{k\\ge 1}k^{-\\alpha }\\eta _k\\)</span> for <span>\\(\\alpha \\in (1/2, 1]\\)</span>.\n</p>","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":"6 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01318-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\eta _1\), \(\eta _2,\ldots \) be independent copies of a random variable \(\eta \) with zero mean and finite variance which is bounded from the right, that is, \(\eta \le b\) almost surely for some \(b>0\). Considering different types of the asymptotic behaviour of the probability \(\mathbb {P}\{\eta \in [b-x,b]\}\) as \(x\rightarrow 0+\), we derive precise tail asymptotics of the random Dirichlet series \(\sum _{k\ge 1}k^{-\alpha }\eta _k\) for \(\alpha \in (1/2, 1]\).

某些德里赫利数列的精确尾部行为
让 \(\eta _1\), \(\eta _2,\ldots \)是具有零均值和有限方差的随机变量 \(\eta \)的独立副本,这个随机变量从右边开始是有界的,也就是说,对于某个 \(b>0\) 来说, \(\eta \le b\) 几乎是肯定的。考虑到概率 \(\mathbb {P}\{eta \in [b-x,b]\}) 的不同类型的渐近行为为 \(x\rightarrow 0+\), 我们推导出随机 Dirichlet 数列 \(\sum _{k\ge 1}k^{-\alpha }\eta _k\)对于 \(\alpha \in (1/2, 1]\)的精确尾部渐近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Theoretical Probability
Journal of Theoretical Probability 数学-统计学与概率论
CiteScore
1.50
自引率
12.50%
发文量
65
审稿时长
6-12 weeks
期刊介绍: Journal of Theoretical Probability publishes high-quality, original papers in all areas of probability theory, including probability on semigroups, groups, vector spaces, other abstract structures, and random matrices. This multidisciplinary quarterly provides mathematicians and researchers in physics, engineering, statistics, financial mathematics, and computer science with a peer-reviewed forum for the exchange of vital ideas in the field of theoretical probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信