{"title":"Binary Peacock Algorithm: A Novel Metaheuristic Approach for Feature Selection","authors":"Hema Banati, Richa Sharma, Asha Yadav","doi":"10.1007/s00357-024-09468-0","DOIUrl":null,"url":null,"abstract":"<p>Binary metaheuristic algorithms prove to be invaluable for solving binary optimization problems. This paper proposes a binary variant of the peacock algorithm (PA) for feature selection. PA, a recent metaheuristic algorithm, is built upon lekking and mating behaviors of peacocks and peahens. While designing the binary variant, two major shortcomings of PA (lek formation and offspring generation) were identified and addressed. Eight binary variants of PA are also proposed and compared over mean fitness to identify the best variant, called binary peacock algorithm (bPA). To validate bPA’s performance experiments are conducted using 34 benchmark datasets and results are compared with eight well-known binary metaheuristic algorithms. The results show that bPA classifies 30 datasets with highest accuracy and extracts minimum features in 32 datasets, achieving up to 99.80% reduction in the feature subset size in the dataset with maximum features. bPA attained rank 1 in Friedman rank test over all parameters.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"11 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00357-024-09468-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Binary metaheuristic algorithms prove to be invaluable for solving binary optimization problems. This paper proposes a binary variant of the peacock algorithm (PA) for feature selection. PA, a recent metaheuristic algorithm, is built upon lekking and mating behaviors of peacocks and peahens. While designing the binary variant, two major shortcomings of PA (lek formation and offspring generation) were identified and addressed. Eight binary variants of PA are also proposed and compared over mean fitness to identify the best variant, called binary peacock algorithm (bPA). To validate bPA’s performance experiments are conducted using 34 benchmark datasets and results are compared with eight well-known binary metaheuristic algorithms. The results show that bPA classifies 30 datasets with highest accuracy and extracts minimum features in 32 datasets, achieving up to 99.80% reduction in the feature subset size in the dataset with maximum features. bPA attained rank 1 in Friedman rank test over all parameters.
期刊介绍:
To publish original and valuable papers in the field of classification, numerical taxonomy, multidimensional scaling and other ordination techniques, clustering, tree structures and other network models (with somewhat less emphasis on principal components analysis, factor analysis, and discriminant analysis), as well as associated models and algorithms for fitting them. Articles will support advances in methodology while demonstrating compelling substantive applications. Comprehensive review articles are also acceptable. Contributions will represent disciplines such as statistics, psychology, biology, information retrieval, anthropology, archeology, astronomy, business, chemistry, computer science, economics, engineering, geography, geology, linguistics, marketing, mathematics, medicine, political science, psychiatry, sociology, and soil science.