An embedding theorem for subshifts over amenable groups with the comparison property

Pub Date : 2024-03-05 DOI:10.1017/etds.2024.21
ROBERT BLAND
{"title":"An embedding theorem for subshifts over amenable groups with the comparison property","authors":"ROBERT BLAND","doi":"10.1017/etds.2024.21","DOIUrl":null,"url":null,"abstract":"<p>We obtain the following embedding theorem for symbolic dynamical systems. Let <span>G</span> be a countable amenable group with the comparison property. Let <span>X</span> be a strongly aperiodic subshift over <span>G</span>. Let <span>Y</span> be a strongly irreducible shift of finite type over <span>G</span> that has no global period, meaning that the shift action is faithful on <span>Y</span>. If the topological entropy of <span>X</span> is strictly less than that of <span>Y</span> and <span>Y</span> contains at least one factor of <span>X</span>, then <span>X</span> embeds into <span>Y</span>. This result partially extends the classical result of Krieger when <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130334345-0052:S014338572400021X:S014338572400021X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$G = \\mathbb {Z}$</span></span></img></span></span> and the results of Lightwood when <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130334345-0052:S014338572400021X:S014338572400021X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$G = \\mathbb {Z}^d$</span></span></img></span></span> for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130334345-0052:S014338572400021X:S014338572400021X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$d \\geq 2$</span></span></img></span></span>. The proof relies on recent developments in the theory of tilings and quasi-tilings of amenable groups.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We obtain the following embedding theorem for symbolic dynamical systems. Let G be a countable amenable group with the comparison property. Let X be a strongly aperiodic subshift over G. Let Y be a strongly irreducible shift of finite type over G that has no global period, meaning that the shift action is faithful on Y. If the topological entropy of X is strictly less than that of Y and Y contains at least one factor of X, then X embeds into Y. This result partially extends the classical result of Krieger when Abstract Image$G = \mathbb {Z}$ and the results of Lightwood when Abstract Image$G = \mathbb {Z}^d$ for Abstract Image$d \geq 2$. The proof relies on recent developments in the theory of tilings and quasi-tilings of amenable groups.

分享
查看原文
具有比较性质的可调和群上子移的嵌入定理
我们得到以下符号动力系统的嵌入定理。设 G 是具有比较性质的可数可调群。让 X 是 G 上的强无周期子移位。让 Y 是 G 上有限类型的强不可还原移位,它没有全局周期,即移位作用在 Y 上是忠实的。如果 X 的拓扑熵严格小于 Y 的拓扑熵,且 Y 至少包含 X 的一个因子,那么 X 嵌入 Y。这个结果部分地扩展了克里格在 $G = \mathbb {Z}$ 时的经典结果,以及莱特伍德在 $G = \mathbb {Z}^d$ 时对于 $d \geq 2$ 的结果。证明依赖于可平分群的倾斜和准倾斜理论的最新发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信