Tracial weights on topological graph algebras

Pub Date : 2024-03-05 DOI:10.1017/etds.2024.20
JOHANNES CHRISTENSEN
{"title":"Tracial weights on topological graph algebras","authors":"JOHANNES CHRISTENSEN","doi":"10.1017/etds.2024.20","DOIUrl":null,"url":null,"abstract":"<p>We describe two kinds of regular invariant measures on the boundary path space <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304092108222-0628:S0143385724000208:S0143385724000208_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\partial E$</span></span></img></span></span> of a second countable topological graph <span>E</span>, which allows us to describe all extremal tracial weights on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304092108222-0628:S0143385724000208:S0143385724000208_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$C^{*}(E)$</span></span></img></span></span> which are not gauge-invariant. Using this description, we prove that all tracial weights on the C<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304092108222-0628:S0143385724000208:S0143385724000208_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$^{*}$</span></span></img></span></span>-algebra <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304092108222-0628:S0143385724000208:S0143385724000208_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$C^{*}(E)$</span></span></img></span></span> of a second countable topological graph <span>E</span> are gauge-invariant when <span>E</span> is free. This in particular implies that all tracial weights on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304092108222-0628:S0143385724000208:S0143385724000208_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$C^{*}(E)$</span></span></img></span></span> are gauge-invariant when <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304092108222-0628:S0143385724000208:S0143385724000208_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$C^{*}(E)$</span></span></img></span></span> is simple and separable.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe two kinds of regular invariant measures on the boundary path space Abstract Image$\partial E$ of a second countable topological graph E, which allows us to describe all extremal tracial weights on Abstract Image$C^{*}(E)$ which are not gauge-invariant. Using this description, we prove that all tracial weights on the CAbstract Image$^{*}$-algebra Abstract Image$C^{*}(E)$ of a second countable topological graph E are gauge-invariant when E is free. This in particular implies that all tracial weights on Abstract Image$C^{*}(E)$ are gauge-invariant when Abstract Image$C^{*}(E)$ is simple and separable.

分享
查看原文
拓扑图代数上的三角形权重
我们描述了第二可数拓扑图 E 的边界路径空间 $\partial E$ 上的两种正则不变度量,这使我们能够描述 $C^{*}(E)$ 上所有不是轨距不变的极值三边权重。利用这一描述,我们证明了当第二个可数拓扑图 E 的 C$^{*}$ 代数 $C^{*}(E)$ 是自由的时候,其上的所有三项权重都是轨距不变的。这尤其意味着,当$C^{*}(E)$是简单可分的时候,$C^{*}(E)$上的所有三项权重都是规整不变的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信