{"title":"Biology and epibiont community of the red decorator crab, Schizophrys aspera, on the southern Great Barrier Reef","authors":"","doi":"10.1007/s00338-024-02479-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Organismal symbioses are fundamental to biodiversity, evolution, and ecosystem functioning. On coral reefs, many decapod species have formed distinct epibiotic symbioses through decoration tendencies that enhance diet, camouflage, and defence. The red decorator crab, <em>Schizophrys aspera</em> (Majidae: Decapoda), has a broad Indo-Pacific distribution and is a successful predator of juvenile crown-of-thorns seastars (CoTS; <em>Acanthaster</em> sp.). However, little is known of the biology and decorating symbioses of <em>S. aspera</em> on the Great Barrier Reef (GBR), where CoTS pose ongoing management challenges. We characterised <em>S. aspera</em> and its epibiont community collected in coral rubble patches on the southern GBR. <em>S. aspera</em> predominantly used sponges (94 ± 1%; mean ± SE) in its decoration, with greater proportions of the carapace covered for juveniles (58 ± 5%) and females (46 ± 4%) compared to males (24 ± 4%). In short-term (8-d) experiments, <em>S. aspera</em> substantially reduced sponge (31%) and algal (47%) cover on rubble pieces, demonstrating its potential to alter sessile communities. The close association of <em>S. aspera</em> with sponges and algae likely reflects its diet and enhances camouflage and chemical defence in its coral rubble niche on the GBR. As sessile taxa are often noxious, we postulate that these symbioses may confer resilience of <em>S. aspera</em> to plancitoxins in its consumption of CoTS. Evaluating how epibiont diversity and biochemistry shape the habitat associations, distribution, and role of <em>S. aspera</em> as predator and prey may be important to understanding its ability to mediate CoTS densities on the GBR and elsewhere.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":"56 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coral Reefs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00338-024-02479-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Organismal symbioses are fundamental to biodiversity, evolution, and ecosystem functioning. On coral reefs, many decapod species have formed distinct epibiotic symbioses through decoration tendencies that enhance diet, camouflage, and defence. The red decorator crab, Schizophrys aspera (Majidae: Decapoda), has a broad Indo-Pacific distribution and is a successful predator of juvenile crown-of-thorns seastars (CoTS; Acanthaster sp.). However, little is known of the biology and decorating symbioses of S. aspera on the Great Barrier Reef (GBR), where CoTS pose ongoing management challenges. We characterised S. aspera and its epibiont community collected in coral rubble patches on the southern GBR. S. aspera predominantly used sponges (94 ± 1%; mean ± SE) in its decoration, with greater proportions of the carapace covered for juveniles (58 ± 5%) and females (46 ± 4%) compared to males (24 ± 4%). In short-term (8-d) experiments, S. aspera substantially reduced sponge (31%) and algal (47%) cover on rubble pieces, demonstrating its potential to alter sessile communities. The close association of S. aspera with sponges and algae likely reflects its diet and enhances camouflage and chemical defence in its coral rubble niche on the GBR. As sessile taxa are often noxious, we postulate that these symbioses may confer resilience of S. aspera to plancitoxins in its consumption of CoTS. Evaluating how epibiont diversity and biochemistry shape the habitat associations, distribution, and role of S. aspera as predator and prey may be important to understanding its ability to mediate CoTS densities on the GBR and elsewhere.
期刊介绍:
Coral Reefs, the Journal of the International Coral Reef Society, presents multidisciplinary literature across the broad fields of reef studies, publishing analytical and theoretical papers on both modern and ancient reefs. These encourage the search for theories about reef structure and dynamics, and the use of experimentation, modeling, quantification and the applied sciences.
Coverage includes such subject areas as population dynamics; community ecology of reef organisms; energy and nutrient flows; biogeochemical cycles; physiology of calcification; reef responses to natural and anthropogenic influences; stress markers in reef organisms; behavioural ecology; sedimentology; diagenesis; reef structure and morphology; evolutionary ecology of the reef biota; palaeoceanography of coral reefs and coral islands; reef management and its underlying disciplines; molecular biology and genetics of coral; aetiology of disease in reef-related organisms; reef responses to global change, and more.