Kato complexes of reciprocity sheaves and applications

Sandeep S, Anand Sawant
{"title":"Kato complexes of reciprocity sheaves and applications","authors":"Sandeep S, Anand Sawant","doi":"arxiv-2403.01735","DOIUrl":null,"url":null,"abstract":"We show that every reciprocity sheaf gives rise to a cycle (pre)module in the\nsense of Rost over a perfect field, under mild additional hypotheses. Over a\nperfect field of positive characteristic, we show that the first cohomology\ngroup of a logarithmic de Rham-Witt sheaf has a partial cycle module structure.\nAs a consequence, we show that Kato complexes of logarithmic de Rham-Witt\nsheaves satisfy functoriality properties similar to Rost's cycle complexes.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.01735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that every reciprocity sheaf gives rise to a cycle (pre)module in the sense of Rost over a perfect field, under mild additional hypotheses. Over a perfect field of positive characteristic, we show that the first cohomology group of a logarithmic de Rham-Witt sheaf has a partial cycle module structure. As a consequence, we show that Kato complexes of logarithmic de Rham-Witt sheaves satisfy functoriality properties similar to Rost's cycle complexes.
互惠剪的加藤复数及其应用
我们证明,在温和的附加假设条件下,在完全域上,每个互易舍夫都会产生一个罗斯特意义上的循环(前)模块。因此,我们证明对数德拉姆-维特舍弗的加藤复数满足与罗斯特循环复数类似的函数性性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信