{"title":"A nonmonotone accelerated proximal gradient method with variable stepsize strategy for nonsmooth and nonconvex minimization problems","authors":"Hongwei Liu, Ting Wang, Zexian Liu","doi":"10.1007/s10898-024-01366-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the problem that minimizing the sum of a nonsmooth function with a smooth one in the nonconvex setting, which arising in many contemporary applications such as machine learning, statistics, and signal/image processing. To solve this problem, we propose a new nonmonotone accelerated proximal gradient method with variable stepsize strategy. Note that incorporating inertial term into proximal gradient method is a simple and efficient acceleration technique, while the descent property of the proximal gradient algorithm will lost. In our algorithm, the iterates generated by inertial proximal gradient scheme are accepted when the objective function values decrease or increase appropriately; otherwise, the iteration point is generated by proximal gradient scheme, which makes the function values on a subset of iterates are decreasing. We also introduce a variable stepsize strategy, which does not need a line search or does not need to know the Lipschitz constant and makes the algorithm easy to implement. We show that the sequence of iterates generated by the algorithm converges to a critical point of the objective function. Further, under the assumption that the objective function satisfies the Kurdyka–Łojasiewicz inequality, we prove the convergence rates of the objective function values and the iterates. Moreover, numerical results on both convex and nonconvex problems are reported to demonstrate the effectiveness and superiority of the proposed method and stepsize strategy.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01366-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the problem that minimizing the sum of a nonsmooth function with a smooth one in the nonconvex setting, which arising in many contemporary applications such as machine learning, statistics, and signal/image processing. To solve this problem, we propose a new nonmonotone accelerated proximal gradient method with variable stepsize strategy. Note that incorporating inertial term into proximal gradient method is a simple and efficient acceleration technique, while the descent property of the proximal gradient algorithm will lost. In our algorithm, the iterates generated by inertial proximal gradient scheme are accepted when the objective function values decrease or increase appropriately; otherwise, the iteration point is generated by proximal gradient scheme, which makes the function values on a subset of iterates are decreasing. We also introduce a variable stepsize strategy, which does not need a line search or does not need to know the Lipschitz constant and makes the algorithm easy to implement. We show that the sequence of iterates generated by the algorithm converges to a critical point of the objective function. Further, under the assumption that the objective function satisfies the Kurdyka–Łojasiewicz inequality, we prove the convergence rates of the objective function values and the iterates. Moreover, numerical results on both convex and nonconvex problems are reported to demonstrate the effectiveness and superiority of the proposed method and stepsize strategy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.