{"title":"Study on the Influence of Multi-Frequency Noise on the Combustion Characteristics of Pool Fires in Ship Engine Rooms","authors":"Zhilin Yuan, Liang Wang, Jiasheng Cao, Yunfeng Yan, Jiaqi Dong, Bingxia Liu, Shuaijun Wang","doi":"10.1615/heattransres.2024051639","DOIUrl":null,"url":null,"abstract":"A large amount of low- and medium-frequency noise can be found in the engine room of a ship. However, during the development of a fire, vibrations of the air in the engine room at different frequencies can be caused by noise disturbances, and the flow field distribution in the flame zone will be changed, which will affect the combustion characteristics of the pool fire. In this paper, a n-heptane pool with a diameter of 6 cm in a confined space of 1500 mm×1500 mm×1000 mm is used. The effects of noise of 75 dB, 90 dB, 105 dB, and 112 dB at 250 Hz, 700 Hz, and 1000 Hz and the noise of the engine room on the combustion behaviour of the pool fire are studied experimentally. By analysing the variation in fuel mass, flame height, and flame tilt, the results show that the multi-frequency noise significantly affects the combustion characteristics of the pool fire in a confined space. Under the perturbation of noise waves, the mass loss rate of the pool is larger than that of the pool fire when it burns freely, and the mass loss rate is exponentially nonlinearly related to the noise pressure. In general, the flame height gradually decreases with an increasing noise pressure in the engine room. Additionally, a new coupling relationship between the flame height and the noise pressure is established based on the noise motion equation, and it is found that there is a negative exponential between the noise pressure and the flame height. In addition, the flame can tilt under the action of the air particle displacement caused by the noise of the engine room. The noise pressure field formed in the confined space has a restraining effect on the pool fire, and the flame tilt angle gradual","PeriodicalId":50408,"journal":{"name":"Heat Transfer Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/heattransres.2024051639","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
A large amount of low- and medium-frequency noise can be found in the engine room of a ship. However, during the development of a fire, vibrations of the air in the engine room at different frequencies can be caused by noise disturbances, and the flow field distribution in the flame zone will be changed, which will affect the combustion characteristics of the pool fire. In this paper, a n-heptane pool with a diameter of 6 cm in a confined space of 1500 mm×1500 mm×1000 mm is used. The effects of noise of 75 dB, 90 dB, 105 dB, and 112 dB at 250 Hz, 700 Hz, and 1000 Hz and the noise of the engine room on the combustion behaviour of the pool fire are studied experimentally. By analysing the variation in fuel mass, flame height, and flame tilt, the results show that the multi-frequency noise significantly affects the combustion characteristics of the pool fire in a confined space. Under the perturbation of noise waves, the mass loss rate of the pool is larger than that of the pool fire when it burns freely, and the mass loss rate is exponentially nonlinearly related to the noise pressure. In general, the flame height gradually decreases with an increasing noise pressure in the engine room. Additionally, a new coupling relationship between the flame height and the noise pressure is established based on the noise motion equation, and it is found that there is a negative exponential between the noise pressure and the flame height. In addition, the flame can tilt under the action of the air particle displacement caused by the noise of the engine room. The noise pressure field formed in the confined space has a restraining effect on the pool fire, and the flame tilt angle gradual
期刊介绍:
Heat Transfer Research (ISSN1064-2285) presents archived theoretical, applied, and experimental papers selected globally. Selected papers from technical conference proceedings and academic laboratory reports are also published. Papers are selected and reviewed by a group of expert associate editors, guided by a distinguished advisory board, and represent the best of current work in the field. Heat Transfer Research is published under an exclusive license to Begell House, Inc., in full compliance with the International Copyright Convention. Subjects covered in Heat Transfer Research encompass the entire field of heat transfer and relevant areas of fluid dynamics, including conduction, convection and radiation, phase change phenomena including boiling and solidification, heat exchanger design and testing, heat transfer in nuclear reactors, mass transfer, geothermal heat recovery, multi-scale heat transfer, heat and mass transfer in alternative energy systems, and thermophysical properties of materials.