{"title":"Large Genus Bounds for the Distribution of Triangulated Surfaces in Moduli Space","authors":"Sahana Vasudevan","doi":"10.1007/s00039-023-00656-5","DOIUrl":null,"url":null,"abstract":"<p>Triangulated surfaces are compact Riemann surfaces equipped with a conformal triangulation by equilateral triangles. In 2004, Brooks and Makover asked how triangulated surfaces are distributed in the moduli space of Riemann surfaces as the genus tends to infinity. Mirzakhani raised this question in her 2010 ICM address. We show that in the large genus case, triangulated surfaces are well distributed in moduli space in a fairly strong sense. We do this by proving upper and lower bounds for the number of triangulated surfaces lying in a Teichmüller ball in moduli space. In particular, we show that the number of triangulated surfaces lying in a Teichmüller unit ball is at most exponential in the number of triangles, independent of the genus.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-023-00656-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Triangulated surfaces are compact Riemann surfaces equipped with a conformal triangulation by equilateral triangles. In 2004, Brooks and Makover asked how triangulated surfaces are distributed in the moduli space of Riemann surfaces as the genus tends to infinity. Mirzakhani raised this question in her 2010 ICM address. We show that in the large genus case, triangulated surfaces are well distributed in moduli space in a fairly strong sense. We do this by proving upper and lower bounds for the number of triangulated surfaces lying in a Teichmüller ball in moduli space. In particular, we show that the number of triangulated surfaces lying in a Teichmüller unit ball is at most exponential in the number of triangles, independent of the genus.