{"title":"An efficient application based many-to-many resource allocation and sharing with power optimization for D2D communication — A clustered approach","authors":"Raghu Thekke Veedu;Kiran Manjappa","doi":"10.23919/JCN.2023.000062","DOIUrl":null,"url":null,"abstract":"This study aims to give an edge to public safety applications over commercial applications in an underlay cellular-assisted device-to-device (D2D) communication. The proposed framework introduces two frameworks: Cluster-based many-to-many resource allocation and resource sharing framework (CMMRARS) and constant time power control algorithm (CTPCA). The RB assigned to a CUE can share with multiple DUE pairs, and the DUE pairs can also use RB assigned to multiple CUEs under the many-to-many strategy. The CMMRARS framework is responsible for resource allocation and resource sharing and accordingly, it is further divided into three sub-problems. The CTPCA framework is divided into two subproblems and used to find optimal power for cellular users and D2D transmitters to avoid cross-tier and co-tier interference. The K-means clustering algorithm is employed to form application-specific clusters, and it ensures that more cellular users fall into the public safety clusters so that the D2D users will get more resource-sharing options. Cellular users use a weighted bipartite graph to form a priority list of D2D users for resource sharing. The main objective of the proposed work is to enhance the system's sum rate by simultaneously reusing the same resource by multiple D2D pairs and safeguarding the Quality of Services provided to all kinds of network users. A theoretical justification is presented to ensure that the proposed frameworks terminate after a certain number of runs and congregate to a consistent matching. Simulation results show that the proposed method influences the overall system's sum rate and provides a preference for public safety applications over commercial applications.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10459141","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10459141/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to give an edge to public safety applications over commercial applications in an underlay cellular-assisted device-to-device (D2D) communication. The proposed framework introduces two frameworks: Cluster-based many-to-many resource allocation and resource sharing framework (CMMRARS) and constant time power control algorithm (CTPCA). The RB assigned to a CUE can share with multiple DUE pairs, and the DUE pairs can also use RB assigned to multiple CUEs under the many-to-many strategy. The CMMRARS framework is responsible for resource allocation and resource sharing and accordingly, it is further divided into three sub-problems. The CTPCA framework is divided into two subproblems and used to find optimal power for cellular users and D2D transmitters to avoid cross-tier and co-tier interference. The K-means clustering algorithm is employed to form application-specific clusters, and it ensures that more cellular users fall into the public safety clusters so that the D2D users will get more resource-sharing options. Cellular users use a weighted bipartite graph to form a priority list of D2D users for resource sharing. The main objective of the proposed work is to enhance the system's sum rate by simultaneously reusing the same resource by multiple D2D pairs and safeguarding the Quality of Services provided to all kinds of network users. A theoretical justification is presented to ensure that the proposed frameworks terminate after a certain number of runs and congregate to a consistent matching. Simulation results show that the proposed method influences the overall system's sum rate and provides a preference for public safety applications over commercial applications.
期刊介绍:
The JOURNAL OF COMMUNICATIONS AND NETWORKS is published six times per year, and is committed to publishing high-quality papers that advance the state-of-the-art and practical applications of communications and information networks. Theoretical research contributions presenting new techniques, concepts, or analyses, applied contributions reporting on experiences and experiments, and tutorial expositions of permanent reference value are welcome. The subjects covered by this journal include all topics in communication theory and techniques, communication systems, and information networks. COMMUNICATION THEORY AND SYSTEMS WIRELESS COMMUNICATIONS NETWORKS AND SERVICES.