Mahmoud A. Albreem;Saeed Abdallah;Khawla A. Alnajjar;Mahmoud Aldababsa
{"title":"Efficient detectors for uplink massive MIMO systems","authors":"Mahmoud A. Albreem;Saeed Abdallah;Khawla A. Alnajjar;Mahmoud Aldababsa","doi":"10.23919/JCN.2023.000053","DOIUrl":null,"url":null,"abstract":"Massive multiple-input multiple-output (MIMO) is one of the essential technologies in beyond fifth generation (B5G) communication systems due to its impact in attaining high power efficiency and spectrum efficiency. The design of low-complexity detectors for massive MIMO continues to attract significant research and industry attention due to the critical need to find the right balance between performance and computational complexity, especially with a large number of antennas at both the transmitting and receiving sides. It has been noticed in several recent studies that appropriate initialization of iterative data detection techniques plays a crucial role in both the performance and the computational complexity. In this article, we propose three efficient initialization methods that achieve a favorable balance between performance and complexity. Instead of using the conventional diagonal matrix, we employ the scaled identity matrix, the stair matrix, and the band matrix with the first iteration of the Newton method to initialize the accelerated overrelaxation (AOR), the successive overrelaxation (SOR), the Gauss-Seidel (GS), the Jacobi (JA), and the Richardson (RI) based detectors. The scaling factor depends on the minimum and maximum eigenvalues of the equalization matrix. The proposed detectors are tested with different massive MIMO configurations, different modulation schemes (QPSK, 16QAM and 64QAM), and perfect and imperfect channel state information (CSI). Using simulations, we show that the proposed detectors achieve a significant performance gain compared to the minimum mean-squared error (MMSE) based detector, the conventional linear massive MIMO detectors, and other existing detectors, at a remarkable complexity reduction.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10416319","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10416319/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Massive multiple-input multiple-output (MIMO) is one of the essential technologies in beyond fifth generation (B5G) communication systems due to its impact in attaining high power efficiency and spectrum efficiency. The design of low-complexity detectors for massive MIMO continues to attract significant research and industry attention due to the critical need to find the right balance between performance and computational complexity, especially with a large number of antennas at both the transmitting and receiving sides. It has been noticed in several recent studies that appropriate initialization of iterative data detection techniques plays a crucial role in both the performance and the computational complexity. In this article, we propose three efficient initialization methods that achieve a favorable balance between performance and complexity. Instead of using the conventional diagonal matrix, we employ the scaled identity matrix, the stair matrix, and the band matrix with the first iteration of the Newton method to initialize the accelerated overrelaxation (AOR), the successive overrelaxation (SOR), the Gauss-Seidel (GS), the Jacobi (JA), and the Richardson (RI) based detectors. The scaling factor depends on the minimum and maximum eigenvalues of the equalization matrix. The proposed detectors are tested with different massive MIMO configurations, different modulation schemes (QPSK, 16QAM and 64QAM), and perfect and imperfect channel state information (CSI). Using simulations, we show that the proposed detectors achieve a significant performance gain compared to the minimum mean-squared error (MMSE) based detector, the conventional linear massive MIMO detectors, and other existing detectors, at a remarkable complexity reduction.
期刊介绍:
The JOURNAL OF COMMUNICATIONS AND NETWORKS is published six times per year, and is committed to publishing high-quality papers that advance the state-of-the-art and practical applications of communications and information networks. Theoretical research contributions presenting new techniques, concepts, or analyses, applied contributions reporting on experiences and experiments, and tutorial expositions of permanent reference value are welcome. The subjects covered by this journal include all topics in communication theory and techniques, communication systems, and information networks. COMMUNICATION THEORY AND SYSTEMS WIRELESS COMMUNICATIONS NETWORKS AND SERVICES.