Oriol Chandre-Vila , Jean-Philippe Boin , Yann Nivet , Sylvie Marquier , Joseph Morlier , Nicolas Gourdain
{"title":"Fast unsteady method for non-linear aeroelastic responses of flexible aircraft wings encountering wind gusts","authors":"Oriol Chandre-Vila , Jean-Philippe Boin , Yann Nivet , Sylvie Marquier , Joseph Morlier , Nicolas Gourdain","doi":"10.1016/j.jfluidstructs.2024.104095","DOIUrl":null,"url":null,"abstract":"<div><p>Given the current context of changes in aeronautics to reduce emissions, it is also necessary to modernise the computation methods to anticipate future cases where disciplines which are now calculated separately (i.e. manoeuvers and gusts) should be computed at the same time including flexible effects and using a time-domain approach. In this work, a static aeroelasticity formulation is adapted to compute wind gust loads. This static method uses aerodynamic matrices to calculate an effective angle of attack (used to recover the local pressure coefficients) from a structural deformation. The approach has been to define this deformation including unsteady effects influence in order to use the same formulation as the static case. Three gust cases (two unsteady and one quasi-steady) have been tested in a rectangular wing, and the proposed method has been compared to the aeroelastic high-fidelity solution and to an uncorrected version of the Doublet Lattice Method (Nastran Solution 146). The proposed solution benefits from the use of the lookup tables to accurately estimate the peak lift coefficient value (maximum error of 6.7%) at least 2.5 times faster than the Doublet Lattice Method. Nevertheless, using a limited model with only two degrees of freedom prevents the proposed method from capturing complex dynamics coming from highly unsteady gust excitation or from aerodynamic instabilities.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624000306","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Given the current context of changes in aeronautics to reduce emissions, it is also necessary to modernise the computation methods to anticipate future cases where disciplines which are now calculated separately (i.e. manoeuvers and gusts) should be computed at the same time including flexible effects and using a time-domain approach. In this work, a static aeroelasticity formulation is adapted to compute wind gust loads. This static method uses aerodynamic matrices to calculate an effective angle of attack (used to recover the local pressure coefficients) from a structural deformation. The approach has been to define this deformation including unsteady effects influence in order to use the same formulation as the static case. Three gust cases (two unsteady and one quasi-steady) have been tested in a rectangular wing, and the proposed method has been compared to the aeroelastic high-fidelity solution and to an uncorrected version of the Doublet Lattice Method (Nastran Solution 146). The proposed solution benefits from the use of the lookup tables to accurately estimate the peak lift coefficient value (maximum error of 6.7%) at least 2.5 times faster than the Doublet Lattice Method. Nevertheless, using a limited model with only two degrees of freedom prevents the proposed method from capturing complex dynamics coming from highly unsteady gust excitation or from aerodynamic instabilities.
期刊介绍:
The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved.
The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.