Thakur Prava Jyoti, Shivani Chandel, Rajveer Singh
{"title":"Unveiling the epigenetic landscape of plants using flow cytometry approach","authors":"Thakur Prava Jyoti, Shivani Chandel, Rajveer Singh","doi":"10.1002/cyto.a.24834","DOIUrl":null,"url":null,"abstract":"<p>Plants are sessile creatures that have to adapt constantly changing environmental circumstances. Plants are subjected to a range of abiotic stressors as a result of unpredictable climate change. Understanding how stress-responsive genes are regulated can help us better understand how plants can adapt to changing environmental conditions. Epigenetic markers that dynamically change in response to stimuli, such as DNA methylation and histone modifications are known to regulate gene expression. Individual cells or particles' physical and/or chemical properties can be measured using the method known as flow cytometry. It may therefore be used to evaluate changes in DNA methylation, histone modifications, and other epigenetic markers, making it a potent tool for researching epigenetics in plants. We explore the use of flow cytometry as a technique for examining epigenetic traits in this thorough discussion. The separation of cell nuclei and their subsequent labeling with fluorescent antibodies, offering information on the epigenetic mechanisms in plants when utilizing flow cytometry. We also go through the use of high-throughput data analysis methods to unravel the complex epigenetic processes occurring inside plant systems.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Plants are sessile creatures that have to adapt constantly changing environmental circumstances. Plants are subjected to a range of abiotic stressors as a result of unpredictable climate change. Understanding how stress-responsive genes are regulated can help us better understand how plants can adapt to changing environmental conditions. Epigenetic markers that dynamically change in response to stimuli, such as DNA methylation and histone modifications are known to regulate gene expression. Individual cells or particles' physical and/or chemical properties can be measured using the method known as flow cytometry. It may therefore be used to evaluate changes in DNA methylation, histone modifications, and other epigenetic markers, making it a potent tool for researching epigenetics in plants. We explore the use of flow cytometry as a technique for examining epigenetic traits in this thorough discussion. The separation of cell nuclei and their subsequent labeling with fluorescent antibodies, offering information on the epigenetic mechanisms in plants when utilizing flow cytometry. We also go through the use of high-throughput data analysis methods to unravel the complex epigenetic processes occurring inside plant systems.
植物是一种无梗生物,必须适应不断变化的环境条件。由于不可预测的气候变化,植物受到一系列非生物压力的影响。了解应激反应基因是如何被调控的,有助于我们更好地理解植物如何适应不断变化的环境条件。众所周知,DNA 甲基化和组蛋白修饰等表观遗传标记会随着刺激因素的变化而发生动态变化,从而调控基因的表达。单个细胞或颗粒的物理和/或化学性质可通过流式细胞仪进行测量。因此,它可用于评估 DNA 甲基化、组蛋白修饰和其他表观遗传标记的变化,是研究植物表观遗传学的有效工具。我们将在这篇详尽的讨论中探讨如何将流式细胞仪作为一种研究表观遗传学特征的技术。利用流式细胞仪分离细胞核并用荧光抗体标记,可提供植物表观遗传学机制方面的信息。我们还将介绍如何利用高通量数据分析方法来揭示植物系统内部发生的复杂表观遗传过程。