Lisa A Peterson, Stephen B Stanfill, Stephen S Hecht
{"title":"An update on the formation in tobacco, toxicity and carcinogenicity of N'-nitrosonornicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.","authors":"Lisa A Peterson, Stephen B Stanfill, Stephen S Hecht","doi":"10.1093/carcin/bgae018","DOIUrl":null,"url":null,"abstract":"<p><p>The tobacco-specific nitrosamines N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are considered 'carcinogenic to humans' by the International Agency for Research on Cancer (IARC) and are believed to be important in the carcinogenic effects of both smokeless tobacco and combusted tobacco products. This short review focuses on the results of recent studies on the formation of NNN and NNK in tobacco, and their carcinogenicity and toxicity in laboratory animals. New mechanistic insights are presented regarding the role of dissimilatory nitrate reductases in certain microorganisms involved in the conversion of nitrate to nitrite that leads to the formation of NNN and NNK during curing and processing of tobacco. Carcinogenicity studies of the enantiomers of the major NNK metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and the enantiomers of NNN are reviewed. Recent toxicity studies of inhaled NNK and co-administration studies of NNK with formaldehyde, acetaldehyde, acrolein and CO2, all of which occur in high concentrations in cigarette smoke, are discussed.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":"275-287"},"PeriodicalIF":3.3000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11102769/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/carcin/bgae018","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The tobacco-specific nitrosamines N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are considered 'carcinogenic to humans' by the International Agency for Research on Cancer (IARC) and are believed to be important in the carcinogenic effects of both smokeless tobacco and combusted tobacco products. This short review focuses on the results of recent studies on the formation of NNN and NNK in tobacco, and their carcinogenicity and toxicity in laboratory animals. New mechanistic insights are presented regarding the role of dissimilatory nitrate reductases in certain microorganisms involved in the conversion of nitrate to nitrite that leads to the formation of NNN and NNK during curing and processing of tobacco. Carcinogenicity studies of the enantiomers of the major NNK metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and the enantiomers of NNN are reviewed. Recent toxicity studies of inhaled NNK and co-administration studies of NNK with formaldehyde, acetaldehyde, acrolein and CO2, all of which occur in high concentrations in cigarette smoke, are discussed.
期刊介绍:
Carcinogenesis: Integrative Cancer Research is a multi-disciplinary journal that brings together all the varied aspects of research that will ultimately lead to the prevention of cancer in man. The journal publishes papers that warrant prompt publication in the areas of Biology, Genetics and Epigenetics (including the processes of promotion, progression, signal transduction, apoptosis, genomic instability, growth factors, cell and molecular biology, mutation, DNA repair, genetics, etc.), Cancer Biomarkers and Molecular Epidemiology (including genetic predisposition to cancer, and epidemiology), Inflammation, Microenvironment and Prevention (including molecular dosimetry, chemoprevention, nutrition and cancer, etc.), and Carcinogenesis (including oncogenes and tumor suppressor genes in carcinogenesis, therapy resistance of solid tumors, cancer mouse models, apoptosis and senescence, novel therapeutic targets and cancer drugs).