PAULINA CECCHI BERNALES, MARÍA ISABEL CORTEZ, JAIME GÓMEZ
{"title":"Invariant measures of Toeplitz subshifts on non-amenable groups","authors":"PAULINA CECCHI BERNALES, MARÍA ISABEL CORTEZ, JAIME GÓMEZ","doi":"10.1017/etds.2024.16","DOIUrl":null,"url":null,"abstract":"<p>Let <span>G</span> be a countable residually finite group (for instance, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb F}_2$</span></span></img></span></span>) and let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\overleftarrow {G}$</span></span></img></span></span> be a totally disconnected metric compactification of <span>G</span> equipped with the action of <span>G</span> by left multiplication. For every <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$r\\geq 1$</span></span></img></span></span>, we construct a Toeplitz <span>G</span>-subshift <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$(X,\\sigma ,G)$</span></span></img></span></span>, which is an almost one-to-one extension of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\overleftarrow {G}$</span></span></img></span></span>, having <span>r</span> ergodic measures <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\nu _1, \\ldots ,\\nu _r$</span></span></img></span></span> such that for every <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$1\\leq i\\leq r$</span></span></img></span></span>, the measure-theoretic dynamical system <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$(X,\\sigma ,G,\\nu _i)$</span></span></img></span></span> is isomorphic to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\overleftarrow {G}$</span></span></img></span></span> endowed with the Haar measure. The construction we propose is general (for amenable and non-amenable residually finite groups); however, we point out the differences and obstructions that could appear when the acting group is not amenable.</p>","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"13 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergodic Theory and Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.16","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be a countable residually finite group (for instance, ${\mathbb F}_2$) and let $\overleftarrow {G}$ be a totally disconnected metric compactification of G equipped with the action of G by left multiplication. For every $r\geq 1$, we construct a Toeplitz G-subshift $(X,\sigma ,G)$, which is an almost one-to-one extension of $\overleftarrow {G}$, having r ergodic measures $\nu _1, \ldots ,\nu _r$ such that for every $1\leq i\leq r$, the measure-theoretic dynamical system $(X,\sigma ,G,\nu _i)$ is isomorphic to $\overleftarrow {G}$ endowed with the Haar measure. The construction we propose is general (for amenable and non-amenable residually finite groups); however, we point out the differences and obstructions that could appear when the acting group is not amenable.
期刊介绍:
Ergodic Theory and Dynamical Systems focuses on a rich variety of research areas which, although diverse, employ as common themes global dynamical methods. The journal provides a focus for this important and flourishing area of mathematics and brings together many major contributions in the field. The journal acts as a forum for central problems of dynamical systems and of interactions of dynamical systems with areas such as differential geometry, number theory, operator algebras, celestial and statistical mechanics, and biology.