P. K. Kanin, V. V. Yagov, A. R. Zabirov, I. A. Molotova, M. M. Vinogradov, V. A. Ryazantsev
{"title":"On the Vapor Film Destabilization Mechanism during Unsteady Film Boiling","authors":"P. K. Kanin, V. V. Yagov, A. R. Zabirov, I. A. Molotova, M. M. Vinogradov, V. A. Ryazantsev","doi":"10.1134/s0018151x23020086","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We present new experimental data on the cooling of nickel and duralumin spheres in subcooled water and ethanol, along with a review of our comprehensive experimental investigations from 2015 to 2022. The hypothesis on the vapor film destabilization mechanism during unsteady cooling of high-temperature bodies is elucidated. Additionally, new correlations are proposed for estimating the temperature head at the cessation of film boiling in both saturated and subcooled liquids. The derived equations are validated against an extensive body of proprietary experimental data as well as data from other researchers, exhibiting strong qualitative and quantitative agreement with experimental outcomes.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0018151x23020086","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We present new experimental data on the cooling of nickel and duralumin spheres in subcooled water and ethanol, along with a review of our comprehensive experimental investigations from 2015 to 2022. The hypothesis on the vapor film destabilization mechanism during unsteady cooling of high-temperature bodies is elucidated. Additionally, new correlations are proposed for estimating the temperature head at the cessation of film boiling in both saturated and subcooled liquids. The derived equations are validated against an extensive body of proprietary experimental data as well as data from other researchers, exhibiting strong qualitative and quantitative agreement with experimental outcomes.
期刊介绍:
High Temperature is an international peer reviewed journal that publishes original papers and reviews written by theoretical and experimental researchers. The journal deals with properties and processes in low-temperature plasma; thermophysical properties of substances including pure materials, mixtures and alloys; the properties in the vicinity of the critical point, equations of state; phase equilibrium; heat and mass transfer phenomena, in particular, by forced and free convections; processes of boiling and condensation, radiation, and complex heat transfer; experimental methods and apparatuses; high-temperature facilities for power engineering applications, etc. The journal reflects the current trends in thermophysical research. It presents the results of present-day experimental and theoretical studies in the processes of complex heat transfer, thermal, gas dynamic processes, and processes of heat and mass transfer, as well as the latest advances in the theoretical description of the properties of high-temperature media.