Miffi: Improving the accuracy of CNN-based cryo-EM micrograph filtering with fine-tuning and Fourier space information

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Da Xu, Nozomi Ando
{"title":"Miffi: Improving the accuracy of CNN-based cryo-EM micrograph filtering with fine-tuning and Fourier space information","authors":"Da Xu,&nbsp;Nozomi Ando","doi":"10.1016/j.jsb.2024.108072","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient and high-accuracy filtering of cryo-electron microscopy (cryo-EM) micrographs is an emerging challenge with the growing speed of data collection and sizes of datasets. Convolutional neural networks (CNNs) are machine learning models that have been proven successful in many computer vision tasks, and have been previously applied to cryo-EM micrograph filtering. In this work, we demonstrate that two strategies, fine-tuning models from pretrained weights and including the power spectrum of micrographs as input, can greatly improve the attainable prediction accuracy of CNN models. The resulting software package, Miffi, is open-source and freely available for public use (<span>https://github.com/ando-lab/miffi</span><svg><path></path></svg>).</p></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847724000121","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient and high-accuracy filtering of cryo-electron microscopy (cryo-EM) micrographs is an emerging challenge with the growing speed of data collection and sizes of datasets. Convolutional neural networks (CNNs) are machine learning models that have been proven successful in many computer vision tasks, and have been previously applied to cryo-EM micrograph filtering. In this work, we demonstrate that two strategies, fine-tuning models from pretrained weights and including the power spectrum of micrographs as input, can greatly improve the attainable prediction accuracy of CNN models. The resulting software package, Miffi, is open-source and freely available for public use (https://github.com/ando-lab/miffi).

Abstract Image

Miffi:利用微调和傅立叶空间信息提高基于 CNN 的低温电子显微图像过滤精度
随着数据收集速度的加快和数据集规模的扩大,对冷冻电子显微镜(cryo-EM)显微照片进行高效、高精度过滤成为一项新的挑战。卷积神经网络(CNN)是一种机器学习模型,已在许多计算机视觉任务中被证明是成功的,以前曾被应用于冷冻电镜显微照片过滤。在这项工作中,我们证明了通过预训练权重对模型进行微调以及将显微照片的功率谱作为输入这两种策略可以大大提高 CNN 模型的预测精度。由此产生的软件包 Miffi 是开源的,可供公众免费使用 (https://github.com/ando-lab/miffi)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of structural biology
Journal of structural biology 生物-生化与分子生物学
CiteScore
6.30
自引率
3.30%
发文量
88
审稿时长
65 days
期刊介绍: Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure. Techniques covered include: • Light microscopy including confocal microscopy • All types of electron microscopy • X-ray diffraction • Nuclear magnetic resonance • Scanning force microscopy, scanning probe microscopy, and tunneling microscopy • Digital image processing • Computational insights into structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信