{"title":"GS-TCGA: Gene Set-Based Analysis of The Cancer Genome Atlas.","authors":"Tarrion Baird, Rahul Roychoudhuri","doi":"10.1089/cmb.2023.0278","DOIUrl":null,"url":null,"abstract":"<p><p>Most tools for analyzing large gene expression datasets, including The Cancer Genome Atlas (TCGA), have focused on analyzing the expression of individual genes or inference of the abundance of specific cell types from whole transcriptome information. While these methods provide useful insights, they can overlook crucial process-based information that may enhance our understanding of cancer biology. In this study, we describe three novel tools incorporated into an online resource; gene set-based analysis of The Cancer Genome Atlas (GS-TCGA). GS-TCGA is designed to enable user-friendly exploration of TCGA data using gene set-based analysis, leveraging gene sets from the Molecular Signatures Database. GS-TCGA includes three unique tools: GS-Surv determines the association between the expression of gene sets and survival in human cancers. Co-correlative gene set enrichment analysis (CC-GSEA) utilizes interpatient heterogeneity in cancer gene expression to infer functions of specific genes based on GSEA of coregulated genes in TCGA. GS-Corr utilizes interpatient heterogeneity in cancer gene expression profiles to identify genes coregulated with the expression of specific gene sets in TCGA. Users are also able to upload custom gene sets for analysis with each tool. These tools empower researchers to perform survival analysis linked to gene set expression, explore the functional implications of gene coexpression, and identify potential gene regulatory mechanisms.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"229-240"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0278","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/4 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Most tools for analyzing large gene expression datasets, including The Cancer Genome Atlas (TCGA), have focused on analyzing the expression of individual genes or inference of the abundance of specific cell types from whole transcriptome information. While these methods provide useful insights, they can overlook crucial process-based information that may enhance our understanding of cancer biology. In this study, we describe three novel tools incorporated into an online resource; gene set-based analysis of The Cancer Genome Atlas (GS-TCGA). GS-TCGA is designed to enable user-friendly exploration of TCGA data using gene set-based analysis, leveraging gene sets from the Molecular Signatures Database. GS-TCGA includes three unique tools: GS-Surv determines the association between the expression of gene sets and survival in human cancers. Co-correlative gene set enrichment analysis (CC-GSEA) utilizes interpatient heterogeneity in cancer gene expression to infer functions of specific genes based on GSEA of coregulated genes in TCGA. GS-Corr utilizes interpatient heterogeneity in cancer gene expression profiles to identify genes coregulated with the expression of specific gene sets in TCGA. Users are also able to upload custom gene sets for analysis with each tool. These tools empower researchers to perform survival analysis linked to gene set expression, explore the functional implications of gene coexpression, and identify potential gene regulatory mechanisms.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases