{"title":"A General Schema for Bilateral Proof Rules","authors":"Ryan Simonelli","doi":"10.1007/s10992-024-09743-w","DOIUrl":null,"url":null,"abstract":"<p>Bilateral proof systems, which provide rules for both affirming and denying sentences, have been prominent in the development of proof-theoretic semantics for classical logic in recent years. However, such systems provide a substantial amount of freedom in the formulation of the rules, and, as a result, a number of different sets of rules have been put forward as definitive of the meanings of the classical connectives. In this paper, I argue that a single general schema for bilateral proof rules has a reasonable claim to inferentially articulating the core meaning of all of the classical connectives. I propose this schema in the context of a bilateral sequent calculus in which each connective is given exactly two rules: a rule for affirmation and a rule for denial. Positive and negative rules for all of the classical connectives are given by a single rule schema, harmony between these positive and negative rules is established at the schematic level by a pair of elimination theorems, and the truth-conditions for all of the classical connectives are read off at once from the schema itself.</p>","PeriodicalId":51526,"journal":{"name":"JOURNAL OF PHILOSOPHICAL LOGIC","volume":"4 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF PHILOSOPHICAL LOGIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10992-024-09743-w","RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PHILOSOPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Bilateral proof systems, which provide rules for both affirming and denying sentences, have been prominent in the development of proof-theoretic semantics for classical logic in recent years. However, such systems provide a substantial amount of freedom in the formulation of the rules, and, as a result, a number of different sets of rules have been put forward as definitive of the meanings of the classical connectives. In this paper, I argue that a single general schema for bilateral proof rules has a reasonable claim to inferentially articulating the core meaning of all of the classical connectives. I propose this schema in the context of a bilateral sequent calculus in which each connective is given exactly two rules: a rule for affirmation and a rule for denial. Positive and negative rules for all of the classical connectives are given by a single rule schema, harmony between these positive and negative rules is established at the schematic level by a pair of elimination theorems, and the truth-conditions for all of the classical connectives are read off at once from the schema itself.
期刊介绍:
The Journal of Philosophical Logic aims to provide a forum for work at the crossroads of philosophy and logic, old and new, with contributions ranging from conceptual to technical. Accordingly, the Journal invites papers in all of the traditional areas of philosophical logic, including but not limited to: various versions of modal, temporal, epistemic, and deontic logic; constructive logics; relevance and other sub-classical logics; many-valued logics; logics of conditionals; quantum logic; decision theory, inductive logic, logics of belief change, and formal epistemology; defeasible and nonmonotonic logics; formal philosophy of language; vagueness; and theories of truth and validity. In addition to publishing papers on philosophical logic in this familiar sense of the term, the Journal also invites papers on extensions of logic to new areas of application, and on the philosophical issues to which these give rise. The Journal places a special emphasis on the applications of philosophical logic in other disciplines, not only in mathematics and the natural sciences but also, for example, in computer science, artificial intelligence, cognitive science, linguistics, jurisprudence, and the social sciences, such as economics, sociology, and political science.