{"title":"Stability and critical dimension for Kirchhoff systems in closed manifolds","authors":"Emmanuel Hebey","doi":"10.1515/ans-2022-0066","DOIUrl":null,"url":null,"abstract":"The Kirchhoff equation was proposed in 1883 by Kirchhoff [<jats:italic>Vorlesungen über Mechanik</jats:italic>, Leipzig, Teubner, 1883] as an extension of the classical D’Alembert’s wave equation for the vibration of elastic strings. Almost one century later, Jacques Louis Lions [“On some questions in boundary value problems of mathematical physics,” in <jats:italic>Contemporary Developments in Continuum Mechanics and PDE’s</jats:italic>, G. M. de la Penha, and L. A. Medeiros, Eds., Amsterdam, North-Holland, 1978] returned to the equation and proposed a general Kirchhoff equation in arbitrary dimension with external force term which was written as <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mfrac> <m:mrow> <m:msup> <m:mrow> <m:mi>∂</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>∂</m:mi> <m:msup> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> </m:mfrac> <m:mo>+</m:mo> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:mi>a</m:mi> <m:mo>+</m:mo> <m:mi>b</m:mi> <m:msub> <m:mo>∫</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:msub> <m:mo stretchy=\"false\">|</m:mo> <m:mi>∇</m:mi> <m:mi>u</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> </m:mrow> </m:mfenced> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:math> <jats:tex-math> $\\frac{{\\partial }^{2}u}{\\partial {t}^{2}}+\\left(a+b{\\int }_{{\\Omega}}\\vert \\nabla u{\\vert }^{2}\\mathrm{d}x\\right){\\Delta}u=f\\left(x,u\\right),$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2022-0066_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mo>=</m:mo> <m:mo>−</m:mo> <m:mo form=\"prefix\" movablelimits=\"false\">∑</m:mo> <m:mfrac> <m:mrow> <m:msup> <m:mrow> <m:mi>∂</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mrow> <m:mi>∂</m:mi> <m:msubsup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msubsup> </m:mrow> </m:mfrac> </m:math> <jats:tex-math> ${\\Delta}=-\\sum \\frac{{\\partial }^{2}}{\\partial {x}_{i}^{2}}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2022-0066_ineq_002.png\" /> </jats:alternatives> </jats:inline-formula> is the Laplace-Beltrami Euclidean Laplacian. We investigate in this paper a closely related stationary version of this equation, in the case of closed manifolds, when <jats:italic>u</jats:italic> is vector valued and when <jats:italic>f</jats:italic> is a pure critical power nonlinearity. We look for the stability of the equations we consider, a question which, in modern nonlinear elliptic PDE theory, has its roots in the seminal work of Gidas and Spruck.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"6 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0066","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Kirchhoff equation was proposed in 1883 by Kirchhoff [Vorlesungen über Mechanik, Leipzig, Teubner, 1883] as an extension of the classical D’Alembert’s wave equation for the vibration of elastic strings. Almost one century later, Jacques Louis Lions [“On some questions in boundary value problems of mathematical physics,” in Contemporary Developments in Continuum Mechanics and PDE’s, G. M. de la Penha, and L. A. Medeiros, Eds., Amsterdam, North-Holland, 1978] returned to the equation and proposed a general Kirchhoff equation in arbitrary dimension with external force term which was written as ∂2u∂t2+a+b∫Ω|∇u|2dxΔu=f(x,u), $\frac{{\partial }^{2}u}{\partial {t}^{2}}+\left(a+b{\int }_{{\Omega}}\vert \nabla u{\vert }^{2}\mathrm{d}x\right){\Delta}u=f\left(x,u\right),$ where Δ=−∑∂2∂xi2 ${\Delta}=-\sum \frac{{\partial }^{2}}{\partial {x}_{i}^{2}}$ is the Laplace-Beltrami Euclidean Laplacian. We investigate in this paper a closely related stationary version of this equation, in the case of closed manifolds, when u is vector valued and when f is a pure critical power nonlinearity. We look for the stability of the equations we consider, a question which, in modern nonlinear elliptic PDE theory, has its roots in the seminal work of Gidas and Spruck.
基尔霍夫方程由基尔霍夫于 1883 年提出[Vorlesungen über Mechanik, Leipzig, Teubner, 1883],作为经典的达朗贝尔波方程对弹性弦振动的扩展。将近一个世纪后,雅克-路易斯-里昂(Jacques Louis Lions)["论数学物理边界值问题中的一些问题",载于《连续介质力学和 PDE 的当代发展》(Contemporary Developments in Continuum Mechanics and PDE's),G. M. de la Penha, and L. A. Medeiros, Eds、阿姆斯特丹,North-Holland,1978 年]回到了方程,并提出了一个任意维度的带外力项的一般基尔霍夫方程,其写法为 ∂ 2 u∂ t 2 + a + b ∫ Ω | ∇ u | 2 d x Δ u = f ( x , u ) 、 $\frac{{partial }^{2}u}{partial {t}^{2}}+\left(a+b{\int }_{{\Omega}}\vert \nabla u{\vert }^{2}\mathrm{d}x\right){\Delta}u=f\left(x,u\right)、其中 Δ = - ∑ ∂ 2 ∂ x i 2 ${\Delta}=-\sum \frac{{\partial }^{2}}{partial {x}_{i}^{2}}$ 是拉普拉斯-贝尔特拉米欧几里得拉普拉斯。本文将研究在封闭流形情况下,当 u 为矢量值且 f 为纯临界幂非线性时,该方程的一个密切相关的静态版本。我们所考虑的是方程的稳定性,这个问题在现代非线性椭圆 PDE 理论中源于 Gidas 和 Spruck 的开创性工作。
期刊介绍:
Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.