Stability and critical dimension for Kirchhoff systems in closed manifolds

IF 2.1 2区 数学 Q1 MATHEMATICS
Emmanuel Hebey
{"title":"Stability and critical dimension for Kirchhoff systems in closed manifolds","authors":"Emmanuel Hebey","doi":"10.1515/ans-2022-0066","DOIUrl":null,"url":null,"abstract":"The Kirchhoff equation was proposed in 1883 by Kirchhoff [<jats:italic>Vorlesungen über Mechanik</jats:italic>, Leipzig, Teubner, 1883] as an extension of the classical D’Alembert’s wave equation for the vibration of elastic strings. Almost one century later, Jacques Louis Lions [“On some questions in boundary value problems of mathematical physics,” in <jats:italic>Contemporary Developments in Continuum Mechanics and PDE’s</jats:italic>, G. M. de la Penha, and L. A. Medeiros, Eds., Amsterdam, North-Holland, 1978] returned to the equation and proposed a general Kirchhoff equation in arbitrary dimension with external force term which was written as <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mfrac> <m:mrow> <m:msup> <m:mrow> <m:mi>∂</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>∂</m:mi> <m:msup> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> </m:mfrac> <m:mo>+</m:mo> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:mi>a</m:mi> <m:mo>+</m:mo> <m:mi>b</m:mi> <m:msub> <m:mo>∫</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:msub> <m:mo stretchy=\"false\">|</m:mo> <m:mi>∇</m:mi> <m:mi>u</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> </m:mrow> </m:mfenced> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:math> <jats:tex-math> $\\frac{{\\partial }^{2}u}{\\partial {t}^{2}}+\\left(a+b{\\int }_{{\\Omega}}\\vert \\nabla u{\\vert }^{2}\\mathrm{d}x\\right){\\Delta}u=f\\left(x,u\\right),$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2022-0066_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mo>=</m:mo> <m:mo>−</m:mo> <m:mo form=\"prefix\" movablelimits=\"false\">∑</m:mo> <m:mfrac> <m:mrow> <m:msup> <m:mrow> <m:mi>∂</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mrow> <m:mi>∂</m:mi> <m:msubsup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msubsup> </m:mrow> </m:mfrac> </m:math> <jats:tex-math> ${\\Delta}=-\\sum \\frac{{\\partial }^{2}}{\\partial {x}_{i}^{2}}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2022-0066_ineq_002.png\" /> </jats:alternatives> </jats:inline-formula> is the Laplace-Beltrami Euclidean Laplacian. We investigate in this paper a closely related stationary version of this equation, in the case of closed manifolds, when <jats:italic>u</jats:italic> is vector valued and when <jats:italic>f</jats:italic> is a pure critical power nonlinearity. We look for the stability of the equations we consider, a question which, in modern nonlinear elliptic PDE theory, has its roots in the seminal work of Gidas and Spruck.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"6 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0066","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Kirchhoff equation was proposed in 1883 by Kirchhoff [Vorlesungen über Mechanik, Leipzig, Teubner, 1883] as an extension of the classical D’Alembert’s wave equation for the vibration of elastic strings. Almost one century later, Jacques Louis Lions [“On some questions in boundary value problems of mathematical physics,” in Contemporary Developments in Continuum Mechanics and PDE’s, G. M. de la Penha, and L. A. Medeiros, Eds., Amsterdam, North-Holland, 1978] returned to the equation and proposed a general Kirchhoff equation in arbitrary dimension with external force term which was written as 2 u t 2 + a + b Ω | u | 2 d x Δ u = f ( x , u ) , $\frac{{\partial }^{2}u}{\partial {t}^{2}}+\left(a+b{\int }_{{\Omega}}\vert \nabla u{\vert }^{2}\mathrm{d}x\right){\Delta}u=f\left(x,u\right),$ where Δ = 2 x i 2 ${\Delta}=-\sum \frac{{\partial }^{2}}{\partial {x}_{i}^{2}}$ is the Laplace-Beltrami Euclidean Laplacian. We investigate in this paper a closely related stationary version of this equation, in the case of closed manifolds, when u is vector valued and when f is a pure critical power nonlinearity. We look for the stability of the equations we consider, a question which, in modern nonlinear elliptic PDE theory, has its roots in the seminal work of Gidas and Spruck.
封闭流形中基尔霍夫系统的稳定性和临界维度
基尔霍夫方程由基尔霍夫于 1883 年提出[Vorlesungen über Mechanik, Leipzig, Teubner, 1883],作为经典的达朗贝尔波方程对弹性弦振动的扩展。将近一个世纪后,雅克-路易斯-里昂(Jacques Louis Lions)["论数学物理边界值问题中的一些问题",载于《连续介质力学和 PDE 的当代发展》(Contemporary Developments in Continuum Mechanics and PDE's),G. M. de la Penha, and L. A. Medeiros, Eds、阿姆斯特丹,North-Holland,1978 年]回到了方程,并提出了一个任意维度的带外力项的一般基尔霍夫方程,其写法为 ∂ 2 u∂ t 2 + a + b ∫ Ω | ∇ u | 2 d x Δ u = f ( x , u ) 、 $\frac{{partial }^{2}u}{partial {t}^{2}}+\left(a+b{\int }_{{\Omega}}\vert \nabla u{\vert }^{2}\mathrm{d}x\right){\Delta}u=f\left(x,u\right)、其中 Δ = - ∑ ∂ 2 ∂ x i 2 ${\Delta}=-\sum \frac{{\partial }^{2}}{partial {x}_{i}^{2}}$ 是拉普拉斯-贝尔特拉米欧几里得拉普拉斯。本文将研究在封闭流形情况下,当 u 为矢量值且 f 为纯临界幂非线性时,该方程的一个密切相关的静态版本。我们所考虑的是方程的稳定性,这个问题在现代非线性椭圆 PDE 理论中源于 Gidas 和 Spruck 的开创性工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信