On subsolutions and concavity for fully nonlinear elliptic equations

IF 2.1 2区 数学 Q1 MATHEMATICS
Bo Guan
{"title":"On subsolutions and concavity for fully nonlinear elliptic equations","authors":"Bo Guan","doi":"10.1515/ans-2023-0116","DOIUrl":null,"url":null,"abstract":"Subsolutions and concavity play critical roles in classical solvability, especially <jats:italic>a priori</jats:italic> estimates, of fully nonlinear elliptic equations. Our first primary goal in this paper is to explore the possibility to weaken the concavity condition. The second is to clarify relations between weak notions of subsolution introduced by Székelyhidi and the author, respectively, in attempt to treat equations on closed manifolds. More precisely, we show that these weak notions of subsolutions are equivalent for equations defined on convex cones of type 1 in the sense defined by Caffarelli, Nirenberg and Spruck.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"69 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0116","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Subsolutions and concavity play critical roles in classical solvability, especially a priori estimates, of fully nonlinear elliptic equations. Our first primary goal in this paper is to explore the possibility to weaken the concavity condition. The second is to clarify relations between weak notions of subsolution introduced by Székelyhidi and the author, respectively, in attempt to treat equations on closed manifolds. More precisely, we show that these weak notions of subsolutions are equivalent for equations defined on convex cones of type 1 in the sense defined by Caffarelli, Nirenberg and Spruck.
论全非线性椭圆方程的子解和凹性
子解和凹性在全非线性椭圆方程的经典可解性,尤其是先验估计中起着至关重要的作用。本文的首要目标是探索弱化凹性条件的可能性。其次是澄清 Székelyhidi 和作者分别引入的弱子解概念之间的关系,以尝试处理封闭流形上的方程。更确切地说,我们证明了这些弱子解概念对于卡法雷利、尼伦伯格和斯普鲁克定义的类型 1 凸锥上的方程是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信